
Generating Simulation Models from UML - A FireSat Example
Johannes Groß, Stephan Rudolph

Institute for Statics and Dynamics of Aerospace Structures
University of Stuttgart

gross@isd.uni-stuttgart.de, rudolph@isd.uni-stuttgart.de

Keywords: complex system design, model-driven engineer-
ing, design languages, UML, model generation

Abstract
The use of graph-based design languages in UML for com-
plex system design is motivated. The FireSat mission from lit-
erature is modeled in different UML classes representing the
systems, subsystems and parts of the satellite. A rule-based
creation mechanism for the instances is shown along with an
executable activity diagram for the definition of the design se-
quence. The generation of simulation models is demonstrated
in the field of geometry (in OpenCascade), thermal simu-
lation (in Esatan-TMS) and behavioral analysis (in Matlab-
Simulink). The paper closes with an illustration of the flexi-
bility in the generation design variants. based on design lan-
guages.

1. DESIGN PROBLEM
In modern product development a multitude of simulation

models is involved in the design process. Due to the multi-
disciplinary nature of such a design process, the consistency
between the models represents a major problem. Propagating
the changes in the evolution of the product design by hand
across the different domain specific models, is a time con-
suming and error prone task (see Fig. 1a).

1.1. Model Diversity
To reduce the work lost in these manual model transfor-

mations, interfaces between different engineering simulation
tools have been developed. For engineering data exchange a
broad standard (STEP) has been developed. Aiming in the
same direction, the key players (Dassault, Siemens, . . .) in the
geometry modeling market create proprietary process chains.
In these developments two points are crucial. Firstly, the num-
ber of interfaces grows in an all-with-all exchange situation
(Fig. 1a) with the disadvantageous factor of n ∗ (n − 1)/2
compared to n for the exchange via a central-model as shown
in Fig.1b). Secondly, a bidirectional interchange between se-
mantically flat application program data is sometimes even
impossible due to the different dimensionality of these mod-
els [Rud06]. The simple and appropriate way out of this
dilemma can be found in a semantically rich and more ab-
stract central data model from which the application program
data can be generated straightforward.

central data
 model

Figure 1. a) ”All-With-All” vs. b) ”Central-Model”

1.2. Design Languages
The approach of a design language as described in

[ArR12], [Rud06] and [ScR03] avoids that such a central data
model as in Fig. 1 which is typically large and complicated
needs to be created manually. Alternatively, in a design lan-
guage (Fig. 2), the engineering objects represents the vocab-
ulary and the required model transformations represent the
rules, i.e. the grammar of the design language. For this work,
the definition of the vocabulary is expressed in the Unified
Modeling Language (UML). In a production system, the rules
are executed in order to instantiate the vocabulary classes.
This compilation process builds up the central data model.
From this high-level central data model, different interfaces

production 
system

design 
compiler

rules

vocabulary

central data model

Unified
Product Model

structure

control

thermal

fluid dynamic

geometry

Figure 2. Process Chain to Create a Central Data Model

generate the simulation models. By this approach it is possi-
ble to address a multitude of simulation programs. In the pre-
sented paper, the compilation of the design language is done
with the ”DesignCompiler 43”. This is an eclipse-based soft-
ware tool for the compilation of design languages formulated
in UML. The design compiler can process design languages
on all abstraction levels to the full detail of the simulation
models. This leads to a completely automated process within
a unified framework. The implementation of the design lan-
guage is the engineers skill, the generation of the models is
mechanistic compiler work.



1.3. Limitations of the state-of-the-art process
With the design language process chain from Fig. 2 several

limitations of the state-of-the-art design process can be over-
come. Currently, in engineering design the process chain runs
most often from a geometry paradigm towards the subsequent
simulation models. The different engineering domains are in-
terfaced alike Fig. 1a) directly and often the data exchange
process requires manual rework. Within a design language,
the number of interfaces can be reduced according to Fig. 1b)
and the information flow can be organized in a hierarchical
manner. Thus more abstract design decisions (e.g. topologi-
cal ones) can be automatically compiled into their implemen-
tations in the different engineering domains. For instance, the
decision on which plate a battery of a satellite is mounted on,
is a topological decision which has to be propagated down-
stream into many subsequent and detailed simulation models
(CAD, FEM, Thermal, etc.).

2. SATELLITE DESIGN LANGUAGE
In this paper, the FireSat example from [LaW99] is mod-

eled in a UML model. The FireSat mission describes a satel-
lite flying in low earth orbit for earth observation in the infra-
red band. The payload of the satellite is supposed to observe
forest fires in the US. The model of the satellite is supposed
to enable the layout of most of the subsystems on a concep-
tual level. In the following sections, a selection of some class
diagrams from the model are presented along with short de-
scriptions of their purpose.

2.1. FireSat Payload
For the payload an optical instrument is laid-out. The class

diagram (Fig. 3) for the payload consists of 5 classes.

FireSatPayload

apertureRatio : m
referenceAperture : m
referenceMass : kg
referencePower : W
absoluteRateError : Hz

OpticalInstrument

lookAngle : deg
swathWidth : deg
xPixel : m
yPixel : m
dataRate : bit/s
vground : m/s
bitPerPixel : bit
rhoEarth : deg
epsSCelevation : deg
incidenceAngle : deg
earthCentralAngle : deg
slantRange : m
yPixelMax : m
xPixelMax : m
thetaRes : rad
ifov : deg

MissionConcept

dataAmountPerOrbit : bit
meanRecordingTime : s
numberOfGroundStations : deg
downlinkRate : bit/s
timeBetweenLinks : s
meanViewTime : s

SensorOptics

detectorWidth : m
imagingQuality : deg
operatingWavelength : m
focalLength : m
apertureDiameter : m
crossTrackPixelNumber : deg
alongTrackPixelPerSec : Hz
pixelsPerSec : Hz
integrationTime : s
nPixelWhiskbroom : deg
operatingBandwidth : µm

SensorRadiometry

spectralRadiance : W*m^-2*µm^-1
radiatedEnergy : W*m^-2*µm^-1
upwellingRadiance : W*m^-2*µm^-1
atmosphericTransmissivity : deg
intUpwellingRad : W/m^2
radiatedPowerPerPixel : W
powerAtSensor : W
powerAtPixel : W
energyInt : W*m
opticalTransmissivity : deg
numPhotons : deg
quantumEfficiency : deg
numElectrons : deg
deltaTemp : K
noiseElectrons : deg
noiseEqTempDiff : K

Figure 3. Classes for the FireSat Payload

2.1.1. FireSat Class
The ”FireSatPayload” class calculates the requirements

from the payload according to given approximations from
[LaW99 p. 296]. These approximations are based on the aper-
ture size of the instrument. This size is calculated in the other
classes of the payload diagram.

2.1.2. Optical Instrument
The three classes ”OpticalInstrument”, ”SensorOptics” and

”SensorRadiometry” contain a calculation of all the rele-
vant parameters of an optical instrument in this stage of de-
sign. The equations contained in these classes are given in
[LaW99] in table 9-15 on page 287. From these calculations,
the focal length and the aperture diameter are obtained as
first approximations for the size of the instrument. Further-
more the noise equivalent temperature difference is an impor-
tant value to meet mission requirements. The integration time
combined with the pixel size serves as input for the attitude
control system design.

2.2. Orbit Classes
For the definition of an orbit, the ”OrbitParameters” class

calculates the orbital period and the number of eclipses over
the satellite life time. The orbit is given in Keplerian orbit
elements. If the orbit is circular, the period is calculated by
the ”CircularOrbit” class. The ”OrbitEclipse” class calculates
the night and daytime for the satellite according to [Gil02]. If
different ground stations shall be used for the mission, the
class ”GroundStation” can be instantiated multiple times.

OrbitParameters

excentricity : deg
semiMajorAxis : m
inclination : deg
ascendingNode : deg
argOfPericenter : deg
radiusPlanet : m
period : s
periodDaylight : ONE
periodEclipse : ONE
missionTime : s
satVelocity : m/s
satelliteLifeTime : year
orbitAltitude : m
numberEclipses : ONE
numOfYears : ONE
unitYear : year

OrbitEclipse

betaStar : rad
fractionEclipse
beta : rad

CircularOrbit

orbitAltitude : m
satVelocity : m/s

GroundStation

maxAngle : rad
maxViewTime : s
minAngle : deg
longitudeShiftPerOrbit : deg

latitude : deg
longitude : deg
altitude : m

SunPosition

numberOfDays : deg
middleEclipticalLength : deg
middleAnomaly : deg
eclipticalLength : deg
epsilon
rightAscension : deg
declinationSun : deg
distanceEarthSun : m

Figure 4. Classes for the orbit definition

3. DESIGN LANGUAGE RULES
The classes shown in the last section are instantiated by

graphical rules. An example rule for the creation of the ba-
sic orbit parameters is shown in Fig. 5. The rule consists of
two sides, a left hand side (LHS) with a search pattern and a
right hand side (RHS) with a pattern of the partial graph after



execution of the rule. If an instance is mapped from the left
hand side (LHS) to the right hand side (RHS) it is kept over
the operation and marked with equal colors on both sides of
the rule. If the instance is only on the left hand side, it will
be deleted. Instances occurring only on the right hand side
are created by the rule. In the following, a few different rules
from the FireSat design language shall be explained.

3.1. ‘Axiomatic’ Rules
Axiomatic rules do have an empty left hand side. These

rules will be executed without any (pre-)conditions. The right
hand side of the rule will be inserted in the model. As shown
in Fig. 5, the orbit parameters for the satellite layout are cre-
ated by this rule. The parameters consist of the instance of the
class ”OrbitParameters” with given values for the inclination,
ascending node and the argument of the pericenter.

package LHS package RHS

orbitParameters : OrbitParameters

inclination = 55
ascendingNode = 55
argOfPericenter = 74.8588

Figure 5. Rule for the initial orbit creation

3.2. ‘Insertion’ Rules
More often the rules have a condition on the left hand side.

Either because the created instance has to be connected with
some existing instance or because it makes only sense to ex-
ecute the rule if some other system element already exists. In
Fig. 6 an instance of the class ”SensorOptics” is created un-
der the condition of the existence of instances of the classes
”FireSatPayload” and ”OpticalInstrument”. The name string
of the instance can be given in such a rule by a regular ex-
pression. If any instance of the class shall be matched, the
expression ‘.*’ can be used.

package LHS

.* : OpticalInstrument.* : FireSatPayload

package RHS

.* : OpticalInstrument

sensorOptics : SensorOptics

.* : FireSatPayload

Figure 6. Rule to connect a sensor optics instance to the pay-
load

In Fig. 7 an example for a bigger pattern in the RHS of a
rule is given. Due to the explicit modeling of the geometry in
this design language, some rules become quite large. In this
example a basic geometry for the helix antenna is created.

package LHS

.* : HelixAntenna

package RHS

.* : HelixAntenna

helixAntennaGeom#hg# : HelixAntennaGeom

pointsPerRevol = 5

helixReflectorL#hg# : Cylinder

phi = 360

helixReflectorD#hg# : Cylinder

phi = 360

helixP#hg#x0 : HelixPoint

helixReflector#hg# : Cut helixWire#hg# : Pipe

shell = 0

helixSpline#hg# : Spline

closed = 0

helixSection#hg# : Circle

helixInitDirection#hg# : Direction

helixReflectorComp#hg# : Component helixWireComp#hg# : Component

Figure 7. Rule to create geometrical definition of a helix an-
tenna

3.3. ‘Architectural’ Rules
In graph-based design languages, architectural definitions

can be described by the links between the different instances
in an elegant manner. In Fig. 8 the architectural definition for
different instances is shown. The instances are all searched
on the left hand side of the rule and mapped to the right hand
side. On the right hand side, only the links between the in-
stances are created.

package LHS

.* : OpticalInstrument .* : OrbitParameters

.* : GroundStation

.* : SensorOptics

.* : SensorRadiometry

.* : FireSatPayload

package RHS

.* : OrbitParameters

.* : GroundStation

.* : OpticalInstrument

.* : SensorOptics

.* : SensorRadiometry

.* : FireSatPayload

Figure 8. Rule to connect orbit instances with the payload

3.4. ‘Modification’ Rules
With the rule mechanism, not only links and instances can

be added, but also existing links and instances can be mod-
ified. In the rule shown in Fig. 9 the rule for the cut-out in
the upper deck wall of the satellite is shown. In this case, the
link from the instance representing the upper deck wall to its
cuboid has to be deleted and the newly created ”Cut” instance
takes this role. Under the cut, the cuboid and the cutting part,
in this case a cylinder, are placed.

3.5. ‘Non-visual’ Rules
For all operations on the model, which can not be ex-

pressed graphically in an intuitive and straight forward man-
ner, rules can also be written in Java. This allows arbitrary



package LHS

.* : SensorOptics

upperDeckYWall : UpperDeckYWall

midPanel : MidPanel

upperDeckYWallCub : Cuboid

package RHS

upperDeckYWall : UpperDeckYWall

upperDeckYWallCub : Cuboid

midPanel : MidPanel .* : SensorOptics

payloadCutCylinder : PayloadCylinder

rx = 0
ry = 0
rz = 1
phi = 360
lx = 0
ly = 0
lz = 0

upperDeckYWallCut : Cut

Figure 9. Rule to cut a hole for the telescope in a satellite
wall

direct modifications of the UML instances.

4. DESIGN LANGUAGE EXECUTION
The creation of the satellite model starts with the creation

of the payload. The requirements of the payload for power,
attitude control, data down link and a mechanical structure
are then satisfied by the different subsystems. The subsystems
can themselves invoke further parts or even other subsystems
to be created as described in detail in [ScR05].

4.1. Creation of the Payload
The instantiation of the payload classes is done within five

rules shown in Fig. 10. Firstly the common ”FireSatPayload”
class is created and subsequently the classes for the calcula-
tion of the optical instrument are instantiated and linked with
the existing instances.

«Rule»

CreateOpticalInstrument

«Rule»

CreateSensorOptics

«Rule»

CreateSensorRadiometry

«Rule»

CreateSensorRadiometryDelta

«Rule»

CreateFireSatPayload

CreatePayload

«Rule»

CreateOpticalInstrument

«Rule»

CreateSensorOptics

«Rule»

CreateSensorRadiometry

«Rule»

CreateSensorRadiometryDelta

«Rule»

CreateFireSatPayload

Figure 10. Activity for the payload creation

4.2. Creation of the Orbit
The creation of the orbit is done in a separate activity

(Fig. 11) independent of the FireSat mission. Only the orbit
parameters have to be adjusted to comply the missions needs.
After the generation of the orbit, the orbit classes are con-
nected to the mission classes as shown in the rule in Fig. 8.

«Rule»

CreateSunPosition

«Rule»

CreateOrbitParameters

«Rule»

CreateCircularOrbit

«Rule»

CreateOrbitEclipse
«Rule»

ConnectOrbitToMission

«Rule»

CreateGroundViewTime

CreateOrbit

«Rule»

CreateSunPosition

«Rule»

CreateOrbitParameters

«Rule»

CreateCircularOrbit

«Rule»

CreateOrbitEclipse
«Rule»

ConnectOrbitToMission

«Rule»

CreateGroundViewTime

Figure 11. Activity for the orbit creation

4.3. Creation of the Satellite
In Fig. 12 the activity for the whole satellite creation pro-

cess is shown. The different actions in the flow are either
rules, subprograms or interface calls. Rules have already been
described above. Subprograms are just another activity like
this one but they may be called from another UML model like
the subprogram ”CreateOrbit” in Fig. 11. An interface call
can be used to trigger e.g. the solution of the current equation
system of the model.

Requirements CreatePayloadCreateGlobalParam CreateOrbit

«Rule»

ConnectPayloadToOrbit

«Rule»

ConnectGroundToMission

«Rule»

TransmitDeltaElectrons

«Interface»

spg

«Rule»

ConMissionOperationsReq

CreateBudgets

CreateSubsystems

CreatePayloadGeometry

«Rule»

CreateSatellite

CreateESATAN

ContactTimes

FireSat

Requirements CreatePayloadCreateGlobalParam CreateOrbit

«Rule»

ConnectPayloadToOrbit

«Rule»

ConnectGroundToMission

«Rule»

TransmitDeltaElectrons

«Interface»

spg

«Rule»

ConMissionOperationsReq

CreateBudgets

CreateSubsystems

CreatePayloadGeometry

«Rule»

CreateSatellite

CreateESATAN

ContactTimes

Figure 12. Main Activity of the FireSat Design Language

In Fig. 13 the model of the created instances after the first
line in the activity above (Fig. 12) is shown. The blue lines
represent links between the instances. Due to several roles an
instance can play in respect to another one, multiple links can
exist between the instances. The values within the instances
result from the evaluation of the analytical equations given in
the classes. The results obtained here can be compared with
table 9-15 in [LaW99].

In the lower right corner of Fig. 13, an alternative view on
the model is shown. In this view each instance is a colored
circle and the links are gray lines. This birds´ eye view is
introduced to be able to give an impression of the complexity
of the model at the end of the design process on the lower left
corner of Fig. 13.

4.4. Design Driver Analysis
For the evaluation of the analytical equations the solution

order of the various equations is found algorithmically by a
so called solution path generator based on [Ser87][BoR03].
With the given solution path, the calculation of the values is
executed by a computer algebra system (CAS). In this case
Mathematica from Wolfram Research is used. Due to the gen-
eral formulation of the mathematical expressions it is also
possible to use other systems like Yacas (open source java
CAS). From the solution path a graph can be generated, to
analyze the influences and locate design drivers in the current
design.

In Fig. 14 a cutout of the solution path with the payload and
orbit instances is shown. The names of the nodes are built af-
ter the pattern ”instance name”.”variable name”. The arrows
point from the values used for the calculation to the values
which are calculated. Every row represents one solution step



payload : FireSatPayload

dataClass = payload DataClassification
power = 32.7566 W
referenceAperture = 1.0 m
referenceMass = 800.0 kg
dataGenerationRate = 82999.9 kbit/s
mass = 29.1169 kg
orbitAveragedDataRate = 41500.0 kbit/s
apertureRatio = 0.263032 m
dutyCyclePerOrbit = 0.5 ONE
absoluteRateError = 0.592857 Hz
referencePower = 900.0 W

payloadHKTM : DataElement

dataClass = housekeeping DataClassification
orbitAveragedDataRate = 2.0 kbit/s
dataGenerationRate = 2.0 kbit/s
dutyCyclePerOrbit = 1.0 ONE

opticalInstrument : OpticalInstrument

incidenceAngle = 70.0 deg
earthCentralAngle = 12.1391 deg
lookAngle = 57.8609 deg
ifov = 0.00245553 deg
thetaRes = 4.28571E-5 rad
vground = 6763.0 m/s
swathWidth = 24.2782 deg
xPixelMax = 198.475 m
xPixel = 30.0 m
rhoEarth = 64.3033 deg
slantRange = 1583924.762362089 m
dataRate = 8.499188333252943E7 bit/s
yPixel = 30.0 m
bitPerPixel = 8.0 bit
yPixelMax = 67.8824 m
epsSCelevation = 20.0 deg

sensorOptics : SensorOptics

imagingQuality = 1.1 deg
integrationTime = 2.40964E-5 s
operatingWavelength = 4.2E-6 m
detectorWidth = 3.0E-5 m
nPixelWhiskbroom = 256.0 deg
apertureDiameter = 0.263032 m
operatingBandwidth = 2.0 µm
alongTrackPixelPerSec = 225.433 Hz
pixelsPerSec = 1.0623980991E7 Hz
focalLength = 0.7 m
crossTrackPixelNumber = 47127.0 deg

sensorRadiometry : SensorRadiometry

deltaTemp = 0 K
numPhotons = 17382.2 deg
spectralRadiance = 0.675396 W*m^-2*µm^-1
powerAtPixel = 3.4117683896780657E-11 W
opticalTransmissivity = 0.75 deg
upwellingRadiance = 0.227895 W*m^-2*µm^-1
numElectrons = 8691.1 deg
intUpwellingRad = 0.45579 W/m^2
energyInt = 8.221133582503854E-16 W*m
noiseElectrons = 93.2261 deg
radiatedPowerPerPixel = 410.211 W
powerAtSensor = 4.549024519570755E-11 W
radiatedEnergy = 2.12182 W*m^-2*µm^-1
quantumEfficiency = 0.5 deg
atmosphericTransmissivity = 0.337424 deg
noiseEqTempDiff = 0.258889 K

deltaRadiometry : SensorRadiometry

deltaTemp = 1 K
energyInt = 8.561754351737821E-16 W*m
powerAtSensor = 4.737501232127522E-11 W
quantumEfficiency = 0.5 deg
noiseElectrons = 95.1378 deg
numPhotons = 18102.4 deg
atmosphericTransmissivity = 0.337424 deg
opticalTransmissivity = 0.75 deg
spectralRadiance = 0.703379 W*m^-2*µm^-1
noiseEqTempDiff = -0.264198 K
intUpwellingRad = 0.474674 W/m^2
radiatedPowerPerPixel = 427.207 W
upwellingRadiance = 0.237337 W*m^-2*µm^-1
radiatedEnergy = 2.20973 W*m^-2*µm^-1
powerAtPixel = 3.553125924095641E-11 W
numElectrons = 9051.2 deg

orbitParameters : OrbitParameters

inclination = 55 deg
ascendingNode = 55 deg
argOfPericenter = 74.8588 deg

satVelocity = 7505.25 m/s
missionTime = 1.5768E8 s
satelliteLifeTime = 5.0 year
periodDaylight = 0.642806 ONE
periodEclipse = 0.357194 ONE
unitYear = 1.0 year
numberEclipses = 26610.4 ONE
radiusPlanet = 6378000.0 m
orbitAltitude = 700000.0 m
numOfYears = 5.0 ONE
period = 5925.5 s
excentricity = 1.0 deg
semiMajorAxis = 7078000.0 m

circularOrbit : CircularOrbit

orbitAltitude = 700000 m
satVelocity = 7505.25 m/s

orbitEclipse : OrbitEclipse

betaStar = 1.1223 rad
fractionEclipse = 0.357194
beta = 0.0246143 rad

sunPosition : SunPosition

numberOfDays = 4900 deg
eclipticalLength = 5111.16 deg
declinationSun = 22.1128 deg
epsilon = 23.437
distanceEarthSun = 1.0151 m
middleAnomaly = 5186.97 deg
middleEclipticalLength = 5110.13 deg
rightAscension = 69.6004 deg

whitesands : GroundStation

minAngle = 5 deg
latitude = 32 deg
longitude = -106 deg
altitude = 0 m
maxAngle = 0.448492 rad
longitudeShiftPerOrbit = 24.6896 deg
maxViewTime = 845.921 s

wallops : GroundStation

minAngle = 5 deg
latitude = 38 deg
longitude = -75 deg
altitude = 0 m
maxViewTime = 845.921 s
maxAngle = 0.448492 rad
longitudeShiftPerOrbit = 24.6896 deg

dataAmountCalcHK : DataAmountCalculation

dataClass = housekeeping DataClassification
initiationTime = 120.0 s
margin = 2.0 ONE

dataAmountCalcPL : DataAmountCalculation

dataClass = payload DataClassification
margin = 2.0 ONE
initiationTime = 120.0 s

missionConcept : MissionConcept

meanDutyCyclePerOrbit = 0.5 ONE

cylinder : PayloadCylinder

rx = 0 mm
ry = 0 mm
rz = 1 mm
phi = 360 deg
r = 131.516 mm
z = 700.0 mm

cylinderPosition : Position

theta = 90 deg
dx = -350.0 mm

Detailed View On Design Graph

Birds View On Design Graph

Birds View on Final Design Graph

Evolution of the 
Design Graph

... ...

Figure 13. On the left hand side, the evolution of the design graph in the beginning is shown. The big graph is the detailed view
of the instances for the payload and the orbit. The graph on the lower right corner is the corresponding graph in a birds view.
The graph on the lower left corner shows the final design graph with 1467 nodes and 2619 edges and contains all necessary
information for the generation of the simulation models (CAD see Fig., Thermal see Fig., Simulink see Fig.



in time i.e. all variables in one row can be solved in parallel.
The values in the subsequent rows are dependent on at least
one value from above.

Figure 14. Excerpt of the solution path for the payload in-
stances

5. GENERATING SIMULATION MODELS
For the generation of the geometry-based simulation mod-

els an abstract geometry representation is created in the se-
mantically rich central model. After the execution of the con-
straint solving mechanism described above, the solution val-
ues of the equations are written to the instances. Subsequently
the semantically rich central model can be translated to dif-
ferent simulation models.

5.1. OpenCascade Geometry Model
The OpenCascade model consists of either primitives, like

cuboids and cylinders, or solids built up from scratch by
points, lines and faces. At this time, the geometry within the
updated abstract geometry description is being integrated into
the project. Fig. 15 below is already generated from this up-
dated model. Before using this approach the geometry was
modeled in Catia-specific UML extensions as described in
[Gro09] and in more detail in [Rei11].

5.2. Esatan Thermal Model
Esatan-TMS is a software package for the prediction of

both steady-state and transient temperatures and heat flows
in a thermal network using the lumped parameter or finite

Figure 15. CATIA Model of FireSat

difference method [ESA11]. The model consists of simpli-
fied geometric representations of the satellite parts. The ini-
tial interface export capabilities of the simulation model are
described in detail in [Koc10]. In addition to the geometry
of the model, the material properties for heat conductance are
exported. The surface properties for the heat radiation and the
topological information for the generation of conductive con-
ductors are also exported from the central model. In Fig. 16
the exported geometry is shown in the Esatan environment.

Figure 16. Esatan Thermal Simulation Model

Figure 17. Esatan Orbit Simulation Generated from a graph-
based design language in UML



The model has a relatively low number of nodes due to the
early design phase of the satellite. The number can however
be set either centrally at one point in the design process, or be
adjusted individually for each part. The whole model can be
generated along the design phases of the satellite and the ad-
ditional rework in the Esatan software to start a simulation is
reduced to a few clicks. The parabolic antenna is still missing
in Fig. 16 due to the above mentioned changes in the geom-
etry modeling. To include the antenna, the translation of the
paraboloid has to be defined. To simulate the mission, the or-
bit information is written to an radiative case file. This file is
the starting point for a ray-tracing based analysis of the view
factors. In Fig. 17 the orbit with an inclination of 55◦ defined
in the rule shown in Fig. 5 can be recognized. It is a circular
orbit and the satellite is in nadir pointing mode.

5.3. Simulink Orbit Simulation Model
For the simulation of the satellites´ attitude control, a

Simulink model is generated. The model generation is de-
scribed in detail in [Rie11]. The generation capability com-
prises a simulation with different actuators, sensors and point-
ing modes. The control algorithms are adapted to the situation
and a visualization in a VRML viewer can be generated. In
Fig. 18 a sequence of the simulation of an acquisition maneu-
ver is shown. The satellite is first in a free floating mode and
then nadir pointing is switched on. In the simulation, differ-

Figure 18. Orbit Simulation in Simulink

ent situations of the satellite operations can be investigated.
In Fig. 19 an example measurement of the offset of the three
axes from an abruptly set target direction is shown over time.

6. LESSONS LEARNED
In a state-of-the-art design process, for the shown analysis

of a satellite design, several rather intensive steps of man-
ual modeling are necessary. The analytical lay-out of the dif-
ferent subsystem has to be carried out. Then a geometrical
model has to be set up. In respect to the properties of the CAD
model both, a consistent Simulink simulation and a thermal
Esatan model have to be created. Just recently the latest ver-
sion of Esatan supports geometry import. Furthermore, the
information architecture of the state-of-the-art design process
prevents the generation of application specific data from more
abstract data. For example the topological information of the

Figure 19. Results of Simulink Simulation

mounting plane of a box can not be mapped from the geomet-
rical model automatically to the thermal model. However, for
the thermal model this represents a crucial information.

6.1. Graph-based design languages
With the method of graph-based design languages in UML,

the upfront investment is much higher compared to the state
of the art. Since searching a file once manually on your com-
puter might be much faster than implementing a search algo-
rithm first, the design language process can show its strength
only in the repeated execution with different initial setups.
Then however, the generation of alternative design variants
becomes very straight forward. It is possible to change some
initial parameters, as for example the size of the satellite
structure, and all the subsequent design processes are still
fully executable. In Fig. 20 different variants of the given de-
sign are shown. In the first line the example presented above
is represented, in the second line, the size of the structure was
increased. In this survey it can be seen that the solar panel
system has not created secondary panels but only a body
mounted one. In the third line, the structure is chosen way
too small just to point out the fact that in this case five solar
panels would be required to fulfill the power need against one
or three panels in the other two variants.

Figure 20. Variations of the given Satellite



6.2. Scalability
In computer science scalability describes the performance

of a software system when the input data is increased. In the
approach of graph-based design languages, UML models are
used and transformed, so the performance of the operations
on the UML models are crucial to the performance of the de-
sign compilation process. In this project, the models of the
satellite are not larger than a few megabytes, even with the
shown complexity including a detailed geometry model. The
largest model is the model for the generation of the orbit sim-
ulation with 17MB. This model is still performing well even
though the used open source UML editors are not specifically
designed and optimized for large data amounts. The problem
of scalability can yet be overcome quite easily due to the pro-
cedural nature of the design tasks. When complex geometry
objects are created, they can for example be saved as a STEP-
file and integrated as an existing component. Then they need
only one string for the file name and the model can be kept
light. With this technique of model transformations and the
adequate level of abstraction in the information representa-
tion it is even possible to develop entire aircraft panels and the
subsequent digital factory within one design process without
performance issues (shown in[ArR12]).

7. OUTLOOK
In this paper, a detailed analysis of the FireSat example is

presented in a short form. The basic design method in form
of graph-based design languages in UML is motivated and
described, relies however on a huge amount of already pub-
lished knowledge ([LaW99], [ScR05], [Gro09]). An extract
of the required classes are shown and their purpose is ex-
plained. Some design rules are illustrated to clarify the design
language approach. The execution of the automated design
process is shown along with the activity diagrams to manage
the rule execution. The abstract central data model is shown
in two different views along with a design driver analysis
which is available all along the design process. To illustrate
the effectiveness of the approach in the generation of simu-
lation models, different models, all automatically generated
from the graph-based design language represented in UML,
are shown. With more space available the authors could go
into more detail in the different subsystems as well as in the
different simulations. In this compact form however the pa-
per can only serve as an appetizer for a closer look on graph-
based design languages, their potential for simulation model
generation and their underlying novel design methodology.

REFERENCES
[AlR03] Alber, R. and Rudolph, S.: ”43” - A Generic Ap-

proach for Engineering Design Grammars. Proceed-
ings of American Association for Artificial Intelli-
gence, Spring Symposium, Stanford, 2003

[ArR12] Arnold, P. and Rudolph, S.: Bridging the gap between
product design and product manufacturing by means
of graph-based design languages, TMCE 2012 Sym-
posium, Karlsruhe, 2012

[Bal00] Balanis, C.: Antenna Theory Analysis and Design. 3rd
Ed. Wiley-Interscience, Hoboken, New-Jersey 2005

[ESA11] htt p : //www.esa.int/T EC/T hermal control/SEM58
ZY NZBG 0.html last access: 2011-11-13

[Gil02] Gilmore, D. G. ed.: Spacecraft Thermal Control Hand-
book. 2rd ed. Reston, Virginia: The Aerospace Press.
2002

[Gro09] Gross, J. et al.: An Executable Unified Product Model
Based on UML to Support Satellite Design. AIAA
2009-6642, AIAA Space Conf. Pasadena, California,
2009

[Kar00] Kark, K.: Antennen und Strahlungsfelder, 3. ext. Ed.,
Wiesbaden, 401-405, Vieweg+Teubner, 2010

[Koc10] Kocak, M.: Erstellung einer Schnittstelle zur gener-
ischen Thermalsimulation von Satelliten. Diploma
Thesis, Institute of Statics and Dynamics of Aerospace
Structures, University of Stuttgart, 2010

[LaW99] Larson, W. J., and J. R. Wertz, eds.: Space mission
analysis and design. 3rd ed. El Segundo, California:
Microcosm, 1999

[Rie11] Riestenpatt genannt Richter, M.: Eine Entwurfssprache
zur Auslegung der Lage- und Bahnregelung von Satel-
liten. Diploma Thesis, Institute of Statics and Dynam-
ics of Aerospace Structures, University of Stuttgart,
2011

[Rei11] Reichwein, A.: Application-specific UML profiles for
multidisciplinary product data integration, PhD The-
sis, University of Stuttgart, 2011

[Rud06] Rudolph, S.: Know-How Reuse in the Conceptual De-
sign Phase of Complex Engineering Products Or: Are
you still constructing manually or do you already gen-
erate automatically? In: Tichkiewitch, S., Tollenaere,
M. and Ray, P. (Eds): Proc. Conf. on Integrated De-
sign and Manufacture in Mechanical Engineering 2006
(IDMME 2006), Grenoble, France, 2006

[ScR05] Schaefer, J. and Rudolph, S.: Satellite Design by De-
sign Grammars. Aerospace, Science and Technology
(AST) 9, 81-91, 2005

[Ser87] Serrano, D.: Constraint Management in Conceptual De-
sign. PhD Thesis, MIT, 1987


