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ABSTRACT 
For the reliability analysis of modern large-scale 
systems new techniques centered on model-based 
approaches are emerging. Benefitting from the available 
modeling practices these techniques incorporate the use 
of simulation to flexibly evaluate the system reliability 
indices and compare different design choices. In this 
context, RAMSAS, a model-based method which 
supports the reliability analysis of systems through 
simulation, has been recently proposed. This paper aims 
at further evaluating the effectiveness and suitability of 
RAMSAS through a real case study concerning the 
reliability analysis of an Attitude Determination and 
Control System (ADCS) of a satellite. 
 
Keywords: System Reliability Analysis, Model-Based 
Systems Engineering, Simulation, Satellite Systems. 
 
1. INTRODUCTION 
Reliability, which represents the ability of a system to 
perform its required functions under stated conditions, 
for a specified period of time, is a key requirement to 
satisfy especially for mission critical systems where 
system failures could cause even human losses (Dodson 
and Nolan 2001). Moreover, Reliability is strongly 
related to other main properties such as: Availability, 
which is the proportion of time a system is in a 
functioning condition defined at design time; 
Maintainability, which represents the ease with which 
maintenance of a system can be performed in 
accordance with prescribed requirements; Safety, which 
takes into account the effects of the system on its 
surrounding environment to prevent, eliminate and 
control hazards. 

Several techniques for performing quantitative and 
qualitative Reliability Analyses are currently available 
(Dodson and Nolan 2001). Specifically, quantitative 
analysis techniques (such as Series-Parallel system 
reliability analysis and Markov Chains) are based on the 
identification and modeling of physical and logical 
connections among system components and on the 
analysis of their reliability through statistical methods 
and techniques. Qualitative analysis techniques aim to 

identify the possible system failures, their rate of 
occurrence and local/global effects on the system so to 
individuate corrective actions; two main techniques are 
currently exploited: FMECA (Failure Modes Effects 
and Critical Analysis) and FTA (Fault Tree Analysis). 
Moreover, with the increasing adoption of software 
components in many modern systems, some extensions 
of the above mentioned techniques which were 
originally conceived mainly for electromechanical 
systems are provided for embedded and software 
intensive systems (e.g. S-FMECA, S-FTA) along with 
specific software-oriented techniques (e.g. HSIA, 
SCCFA, PSH) (ECSS-Q80-03 2006). Nevertheless, the 
increase in both system complexity and accuracy 
required in the reliability analysis often goes beyond the 
capabilities of the so far mentioned techniques which 
are mainly based on statistical and probabilistic tools 
and on the hierarchical decomposition of the system in 
terms of its components. Moreover, their integration in 
typical system development processes, and especially in 
the design phases, is quite difficult and then their use is 
often postponed to the later development stages (e.g. 
system verification). As a consequence, new techniques 
are emerging which are centered on model-based 
approaches so to benefit from the available modeling 
practices and which incorporate the use of simulation to 
flexibly evaluate the system reliability indices and 
compare different design choices (Cressent et Al. 2011; 
Iwu et Al. 2007; Oren and Yilmaz 2006). However, 
despite a general consensus on the advantages that 
could derive from the exploitation of model-based 
approaches for system reliability analysis, the use of 
these techniques has been traditionally unusual and has 
not been recommended by international standards until 
recently (IEC 61508, 2010). This delay in the adoption 
is mainly due to the lack of methods able to integrate 
available modeling languages, tools and techniques in a 
consistent modeling framework. 

To contribute to fill this lack, RAMSAS, a model-
based method for the Reliability Analysis of Systems 
through simulation has been recently proposed (Garro 
and Tundis 2012a-b-c). In particular, RAMSAS aims at 
combining in a unified framework the benefits of 



popular OMG modeling languages (UML, SysML) with 
the wide adopted Mathworks simulation and analysis 
environments (Matlab, Simulink).  

RAMSAS has been experimented in the avionics 
domain for the reliability analysis both of a Landing 
Gear System (Garro, Tundis and Chirillo 2011) and of a 
Flight Management System (Garro and Tundis 2012b); 
and in the automotive domain for the reliability analysis 
of an Electronic Stability Control (ESC) system (Garro 
and Tundis 2012a). This paper aims at further 
evaluating the effectiveness and suitability of RAMSAS 
through the reliability analysis of an Attitude 
Determination and Control System (ADCS) (Wertz 
1978) of a satellite. 

The rest of the paper is structured as follows: in 
Section 2 the RAMSAS method is briefly described 
whereas in Section 3 its exploitation for the reliability 
analysis of an Attitude Determination and Control 
System (ADCS) of a satellite is reported; finally, a 
discussion about the lessons learned and future research 
directions concludes the paper. 
 
Table 1: Phases of the RAMSAS method and related 
work-products 

Phases Input work-products Output work-
products 

Reliability 
Requirement 

Analysis 

System Design Model 
(SDM), System 

Requirements (SR) 

Reliability Analysis 
Objectives (RAO) 

System 
Modeling 

System Design Model 
(SDM), Reliability Analysis 

Objectives (RAO) 

System Model for 
Reliability Analysis 

(SMRA) 

System 
Simulation 

System Model for Reliability 
Analysis (SMRA), 
Reliability Analysis 
Objectives (RAO) 

Simulation Results 
(SIRE) 

Results 
Assessment 

Simulation Results (SIRE), 
Reliability Analysis 
Objectives (RAO) 

Design Suggestions 
Report (DSR), 

Reliability Analysis 
Report (RAR) 

 
2. THE RAMSAS METHOD 
RAMSAS is a model-based method which supports the 
reliability analysis of systems through simulation by 
providing a classical iterative process consisting of four 
main phases: Reliability Requirements Analysis, System 
Modeling, System Simulation, and Results Assessment. 
These phases are reported in Table 1 along with their 
input and output work-products. Specifically, in the 
Reliability Requirements Analysis phase the objectives 
of the reliability analysis are specified and the reliability 
functions and indicators to evaluate during the 
simulation are defined. In the System Modeling phase, 
the structure and behavior of the system are modeled in 
SysML (OMG Systems Modeling Language) by using 
zooming in-out mechanisms [9]; moreover, beside the 
intended system behaviors, specific dysfunctional 
behaviors and related tasks, which model the onset, 
propagation and management of faults and failures, are 
introduced. In the System Simulation phase, the 
previously obtained models of the system are 

represented in terms of the constructs offered by the 
target simulation platform, then simulations are 
executed so to evaluate the reliability performance of 
the system also on the basis of different operating 
conditions, failure modes and design choices. Finally, 
simulation results are analyzed with respect to the 
objectives of the reliability analysis; if necessary, new 
partial or complete process iterations are executed. 

RAMSAS is strongly related to the proposal 
presented in (Cressent et al., 2011), however, as 
RAMSAS strongly relies on the Method Engineering 
paradigm (Henderson-Sellers 2003) it provides a self-
consistent method fragment for system reliability 
analysis which can be easy pluggable in various phases 
of a typical system development process ranging from 
the design to the testing phases so to complement other 
well-known and wide adopted techniques for system 
reliability analysis (e.g. FMECA, FTA, RBD) by 
providing additional analysis capabilities. 

A more complete description of RAMSAS can be 
found in (Garro and Tundis 2012b); in the following 
Section its exploitation for the reliability analysis of the 
ADCS of a satellite is showed and discussed in details. 
 
3. RELIABILITY ANALYSIS OF AN ATTITUDE 

DETERMINATION AND CONTROL 
SYSTEM (ADCS) 

 
3.1. System Description 
The satellite under survey is the hypothetical FireSat 
mission from literature based on (Wertz 1999) with a 
refined system design from (Gross 2012a and b). The 
mission objectives of FireSat are to detect, analyze and 
monitor forest fires. Therefore the satellite´s Attitude 
Determination and Control System (ADCS) has to 
provide (among other modes) the ability for the satellite 
to scan the area below the satellite on the earth surface 
to detect fires. The corresponding mode is called nadir-
pointing mode, which means that the satellite is 
pointing towards the earth’s center. The satellite is 
orbiting the earth at an altitude of ~700 km over ground, 
which is called a low-earth orbit (LEO). Resulting from 
its altitude, the satellite has to turn with a constant 
angular velocity once it is aligned to nadir pointing. In 
Figure 1 the activation of the nadir-pointing mode is 
shown. After the acquisition of the attitude, the payload 
camera of the satellite surveys a swath of a certain 
width on the ground below the satellite. 
 

 

Figure 1: Sketch of the satellite flying over a fire in 
target pointing mode 
 



The necessary adjustment of the satellite’s attitude 
and its angular velocity is attained by applying torques 
on the satellite. The Attitude Determination and Control 
System (ADCS) contains therefore thrusters which 
imply a torque on the satellite in orbit. By firing 
different thrusters at the corners of the box-shaped 
satellite, the satellite can be turned around all axes. 
 
3.2. Reliability Requirements Analysis 
The ADCS of the satellite has to fulfill the functional 
requirements for the alignment of the satellite. The 
system consists of sensors, actuators and the on-board 
computer controlling the system. The thrusters are used 
as the actuators in the system. Due to their mission-
critical role there are redundant thruster packs. The 
sensors determine the angular velocity and the attitude 
angles of the satellite. The on-board computer has a 
navigation unit, which calculates with the sensor data 
the target alignment of the satellite. Afterwards, the 
commands for the actuators are calculated, based on the 
resulting data of the navigation. 

This chain of activities (determine attitude, 
calculate action, execute commands) has to be fulfilled 
over the whole lifetime of the satellite by the ADCS. 
Since the functional requirement for attitude control can 
be reached by several combinations of the redundant 
thruster packs, the evaluation of non-functional 
requirements for system reliability has to be coupled 
with the functional analysis of the system. 
 
3.3. System Modeling 
In the System Modeling phase the structure and both the 
intended and dysfunctional behavior of the system 
under consideration are represented in SysML by 
executing four modeling activities (see Garro and 
Tundis 2012b): System Structure Modeling, Intended 
Behavior Modeling, Dysfunctional Behavior Modeling 
and Behavior Integration. Each of these activities will 
be described in the following sub-sections with 
reference to the ADCS. 
 
3.3.1. System Structure Modeling 
In the System Structure Modeling activity, the system 
structure is modeled by using SysML Blocks following 
a top-down approach so to obtain a hierarchical 
decomposition of the system (e.g. system, subsystems, 
equipment, and components). Specifically, each system 
entity is represented by a SysML Block and modeled by 
both a Block Definition Diagram (BDD) and an Internal 
Block Diagram (IBD). As an example, the BDD of the 
ADCS system of Figure 2 shows that the ADCS 
consists of the following subsystems: FlightSoftware, 
Actuators, Sensors, VehicleDynamics, and the 
PointingMode. For each system block, its input and 
output interfaces are specified according to the 
following template: <SourceBlock_DestinationBlock_ 
PortName_InputOrOutputPortType>. 
 

 
Figure 2: Block Definition Diagram of the ADCS 

 
For providing a description of the internal structure 

of a block in terms of the organization of its component 
blocks an IBD is introduced. As an example, the 
internal structure of the ADCS is reported in Figure 3 in 
which the component subsystems, their connections and 
interaction paths along with their operations and 
attributes, are represented. 
 

 
Figure 3: Internal Block Diagram of the ADCS 

 
By applying zooming-in mechanisms the system 

block identified after the first decomposition (see Figure 
2) can be further decomposed so to reach a deeper level 
of decomposition. As an example, the structure of the 
Actuator subsystem in terms of its components 
(ThrustersControl and ComputeBodyForces) is shown 
by the BDD diagram in Figure 4 whereas the 
connections among them are highlighted in the IBD 
diagram in Figure 5. 
 

 
Figure 4: Block Definition Diagram of the Actuators 
subsystem 
 



 
Figure 5: Internal Block diagram of the Actuators 
subsystem 
 

In Figure 6 the structure of the FlightSoftware 
subsystem (see Figure 2) in terms of its components 
(Navigation and AttitudeControl) is reported exploiting 
a BDD, whereas its internal structure is highlighted in 
Figure 7 through an IBD. 
 

 
Figure 6: Block Definition Diagram of the 
FlightSoftware subsystem 
 

 
Figure 7: Internal Block Diagram of the FlightSoftware 
subsystem 
 
3.3.2. Intended Behavior Modeling 
The Intended Behavior Modeling activity takes as input 
the hierarchical structure of the system as obtained 
during the System Structure Modeling activity (See 
Section 3.3.1) and specifies the intended behavior of the 
system by following a bottom-up approach. 
Specifically, the behavior of the system entities at the 
lowest level in the hierarchy, or leaf level (e.g. 
component level), are first specified; then the behavior 
of the entities at higher levels of abstraction, or non-leaf 
levels (e.g. subsystem and system level), are modeled 
by specifying how the enclosed entities participate and 
determine the behavior of each considered enclosing 
entity. 

Depending on both, the characteristics of the 
behavior and the abstraction level to represent, different 
type of SysML diagrams can be exploited to model the 
behavior of a given entity: Activity, Sequence, 
Parametric, and Statechart Diagrams (see Garro and 
Tundis 2012b). 

With reference to the ADCS, its behavior depends 
on the behavior of its subsystems (FlightSoftware, 
Actuators, Sensors, PointingMode, VehicleDynamics) 
and their interactions. In particular, the FlightSoftware 
subsystem is the brain of the system as it takes the 
decisions to control the satellite system; whereas, the 
Actuators subsystem is used to apply a torque on the 
satellite. In turn, the behavior of the FlightSoftware 
depends on the behavior of both the Navigation and 
AttitudeControl components; whereas the behavior of 
an Actuators subsystem depends on the behavior of 
both the ThrustersControl and ComputeBodyForces 
components, and so on. 

In Figure 8 the intended behavior of the 
ThrustersControl component is shown using a SysML 
Activity diagram. In particular starting from the 
torque_cmds command (or signal), which is received 
from the FlightSoftware, if this command is in one or 
more axes over a torque_thresh threshold, then the 
appropriate thrusters are set on. If the command falls 
below the torque_thresh threshold, then the thrusters 
are set off; in particular, if the thruster is set off, then 
the valve is closed. If the thruster is set on, then the 
appropriate valve is open. Because the satellite has at 4 
of its 8 corners one thruster pack consisting of 3 
thrusters (x,y,z), the cycle is executed 12 times. At the 
end of this task, a signal of thruster_forces, which is 
composed by the single four packs is produced and sent 
in output. 
 

 
Figure 8: Intended Behavior of the ThrustersControl 
component 
 

In the following, the behavior of the 
ComputeBodyForces component is described; 
moreover, one part of it is also represented through the 
exploitation of a Parametric Diagram (see Figure 9). 
Such behavior is defined as a set of equations, which 
take as input the thruster_forces signal in terms of their 
single packs: xyz_pack_i, for i=1,..,4 (where xyz_pack_i 
is the vector which shows which thruster of the thruster 
pack is on/off), and thruster_position_i for i=1,..,4. All 
those signals are used to compute F_Pack1, F_Pack2, 
F_Pack3, F_Pack4 (where F_pack is a vector of forces 



of the thruster pack) which in turn are exploited to 
produce in output a part of the Forces signals. 
 

 
Figure 9: Intended Behavior of the 
ComputeBodyForces component 
 

As described above, after defining the intended 
behavior of the entities at the leaf level (e.g. the 
ThrustersControl and the ComputeBodyForces 
component for the FlightSoftware subsystem), the 
behavior of the entities at the non-leaf levels is 
specified. As an example, the intended behavior of the 
FlightSoftware subsystem can be derived and 
represented through a Sequence diagram (see Figure 10) 
which highlights the iterations among the involved 
entities; the behavior specified in Figure 8 and in Figure 
9 is invoked by the computeTh() and computeForce() 
messages respectively. 

By applying a similar approach the intended 
behavior of the whole system can be derived. 
 

 
Figure 10: Intended Behavior of the Actuators 
subsystem 
 
3.3.3. Dysfunctional Behavior Modeling 
In the Dysfunctional Behavior Modeling activity, the 
focus is on the modeling of faults and failures, which 

are key concepts of the system reliability analysis. 
Specifically, for each entity represented by a SysML 
Block (see Section 3.3.1), beside the intended behavior, 
the behavior concerning faults and failures (i.e. the 
dysfunctional behavior) is specified as a set of 
dysfunctional tasks (see Figure 11). These tasks could 
receive as input a set of failure events (e.g. due to the 
failures of other blocks) and could, in turn, produce as 
output other failure events due to the failure of the 
block; moreover, internal faults (represented as fault 
events) can be generated and treated inside the block 
possibly producing block failures (and thus output 
failure events). For specifying these dysfunctional tasks 
six templates have been individuated (see Figure 11): 
Fault Generation, Failure Generation, Failure 
Management, Fault Management Failure Propagation, 
and Failure Transformation. Moreover, five 
fault/failure types could be considered (Grunske and 
Kaiser 2005): (i) reaction too late; (ii) reaction too 
early; (iii) value failure; (iv) commission; and (v) 
omission. By combining the individuated six 
dysfunctional task types with these five fault/failure 
types, thirty different basic fault/failure behavioral 
patterns can be derived (Garro and Tundis 2012b). 
 

 
Figure 11: The reference Behavioral Model of an entity 
 

 
Figure 12: Dysfunctional Behavior of the 
FlightSoftware Subsystem 
 

As an example, with reference to the system under 
consideration, both the FailureGeneration and 
FailurePropagation templates have been exploited to 
model the failure generation and failure propagation 
events of the FlightSoftware subsystem. In particular, a 
FailureGeneration task is activated by a TimedEvent 
(manually or by a clock) according to a set of 
StepFunctions having specific function values and delay 
times (see Figure 12). Then, two OutputFailureSignals 
are produced: (i) a SensorFailure signal which is 



directly sent to the Navigation component, (ii) a 
Actuator_Failure signal, which is propagated outside 
towards the Actuators subsystem, by applying a 
FailurePropagation task. 

When the Actuator_Failure signal reaches the 
Actuators subsystem, it is propagated towards the 
ThrusterControl component. Beside the intended 
behavior of the TrusterControl component, a 
FailureManagement task has been also implemented 
which, starting from the Actuator_Failure signal in 
input, is able to handle such InputFailureSignal or 
produces an OutputFailureSignal which in turn 
simulates the crash of a whole thruster pack after a 
specific time. 
 
3.3.4. Behavior Integration 
In the Behavior Integration activity, both the intended 
behaviors and the dysfunctional behaviors modeled in 
the previous modeling activities are integrated to obtain 
an overall behavioral model of the system and its 
component entities.  As an example, in order to 
integrate both the FailureGeneration and 
FailurePropagation task in the intended behavior of the 
FlightSoftware subsystem, a new software component, 
called FailureDetection, has been introduced (see 
Figure 13) which implements the dysfunctional 
behavior represented in Figure 12. 
 

 
Figure 13: Behavior Integration into the FlighSoftware 
subsystem 
 

In particular, the FailureDetection component 
takes as input two signals: (i) sensor_outputs coming 
from the Sensors subsystem and (ii) torque_commands 
which is in a feedback. Then, the FailureDetection 
component produces as output (through the 
FailureGeneration task) two signals:  (i) sensor_failure 
which is sent to the Navigation component and (ii) an 
Actuator_Failure which is sent as output (through the 
FailurePropagation task) to the FlightSoftware 
subsystem. 

A similar model has been derived for the Actuators 
subsystem. 

This Behavior Integration activity closes the 
System Modeling phase by delivering the System Model 
for Reliability Analysis (SMRA) work-product. 

 

3.4. System Simulation 
The objective of the System Simulation phase is to 
evaluate through simulation the reliability performance 
of the system and, possibly, compare different design 
alternatives and parameters settings. In particular, the 
following three main activities are performed: Model 
Transformation, Parameters Setting, and Simulation 
Execution. Each of these activities is described in the 
following sub-sections. 
 
3.4.1. Model Transformation 
In the Model Transformation activity a skeleton of an 
Executable System Model (ESM) is derived from the the 
System Models for Reliability Analysis (SMRA) 
obtained in the previous phase. In particular, in the 
current version of the RAMSAS method the ESM is 
generated for the Mathworks Simulink platform which 
represents a de facto standard for the simulation of 
multi-domain dynamic and embedded systems. This 
model transformation is based on a mapping between 
the basic SysML and Simulink constructs; in particular: 
(i) a (simple) SysML Block is transformed into a 
Simulink Block; (ii) a (composite) SysML Block, 
consisting of other blocks (its parts), is transformed into 
a Simulink Subsystem Block; (iii) SysML FlowPorts 
are transformed into Input and Output Simulink Blocks; 
(iv) SysML Flow Specifications, used to type 
FlowPorts, are transformed into Simulink Bus Objects. 
Moreover, the SysML behavioral diagrams which 
model the intended and the dysfunctional system 
behavior are transformed in Simulink functions and/or 
Stateflows, according to specific transformation rules. 
As an example, Figure 14 shows an ESM model which 
has been derived from the ADCS system represented, 
through a SysML notation, in Figure 2 and Figure 3. 
 

 
Figure 14: Executable System Model of the ADCS 
system 
 

Figure 15 represents the full ESM model for the 
Intended Behavior of the ComputeBodyForces 
component, which has been derived from the 
Parametric diagram in Figure 9. 
 



 
Figure 15: Executable System Model for the Intended 
Behavior of the ComputeBodyForces component 
 

Figure 16 and Figure 17 show the behavior of the 
thruster packs through Stateflows after the Behavior 
Integration activities. In particular, the Stateflow of the 
ThrusterLogic (Figure 16) simulates the behavior of the 
thruster packs. The function, shown in Figure 17, is 
derived from the behavior of a thruster pack, shown in 
Figure 8. This function includes a Failure Management 
task (in combination with the Stateflow data, see Figure 
16), beside the intended and dysfunctional behavior of 
the thruster packs. 
 

 
Figure 16: Stateflow of the Behavior of the Thruster 
Pack 
 

In Figure 18 the Stateflow for the simulation of the 
behavior of a valve is shown. The valve is for the fuel 
connection of a single thruster. The Stateflow simulates 
also the intended behavior and dysfunctional behavior 
when a failure occurs. 

 
Figure 17: Thruster Pack failure management for x-
torque commands 
 

 
Figure 18: Stateflow of the Behavior of a Valve 

 
3.4.2. Parameters Setting 
Before starting the simulation, several system and 
configuration parameters can be set to evaluate system 
reliability performance in different simulation scenarios. 
In the Parameters Setting activity, the ESM is refined so 
to allow the flexible setting of system configuration and 
simulation parameters which can be tuned according to 
both, the characteristics of the operative scenario to 
simulate and the failure modes to analyze (by acting on 
the settings of the faults and failures generation, 
propagation and management tasks). 

For the ADCS different parameters can be set. One 
parameter is the torque_thresh of which variation 
determines the operating range of the thrusters. Further, 
the specific impulse (Isp) of the thrusters can be 
changed, which represents the variation of the thruster 
and/or fuel. The position of the thruster packs can also 
be changed. This variation changes the lever for the 
torque calculation. These are only a few examples, 
explicit for the actuators, which show the flexibility 
range of the system. 



As an example, Figure 19 shows the Model 
Explorer panel of Simulink by which the main 
parameters of the ADCS system can be tuned 
opportunely. 
 

 
Figure 19: A Screenshot of the Parameters Setting 
activity 
 

 
Figure 20: Diagrams for the Intended Behavior 

 
3.4.3. Simulation Execution 
In this activity the resulting ESM, which is a complete 
executable Simulink model, is represented as a network 
of blocks. This model is executed according to a 
synchronous reactive model of computation: at each 
step, Simulink computes, for each block, the set of 
outputs as a function of the current inputs and the block 
state, then it updates the block state. During the 
simulation faults and failures are injected (by 
TimedEvent or TriggeringEvent) and/or caused to stress 
and analyze the behavior of the ADCS system. At the 
end of this activity, the data generated from the 
simulations are reported in the Simulation Results 
(SIRE) work-product to be analyzed in the next phase. 

Executing the system allows, beside parameter 
variation, the simulation of the system behavior, during 
the failure of some components. The simulated failure 
types can be distinguished in two main types. First, the 
failure of a thruster pack with all three thrusters can be 
simulated. All three thrusters of the thruster pack are out 
of order. The failure is compensated through the use of 
other thrusters (see Figure 17). The intended choice for 
raising the torque is with the thrusters in y-axis. 
However, if one of the used thrusters is defective, then 
the failure management tries to use the thrusters aligned 
in z-axis to fulfill the command. Second, the 
dysfunctional behavior of a valve, between the fuel 
connection and the thruster, is shown. As reported in 
Figure 18, while opening, the valve could block and 
stay closed. Further, while closing, the valve could stick 

and stay open. In the following sections two examples 
of simulation executions are described. 

In Figure 20 the intended behavior of a simulation 
is illustrated. The simulation begins with a start 
alignment of the satellite. The results of the simulation 
are illustrated within the three diagrams plotted over the 
simulation time. The topmost diagram shows the torque 
command, calculated by the FlightSoftware subsystem. 
The torque threshold is 0.2 Nm. This means the 
maximum difference between the required torque for a 
target alignment and the actual alignment in an axis, 
which is allowed, is 0.2 Nm. If the threshold is 
exceeded, then the thrusters should create a torque to 
reach the intended alignment. The three different curves 
are the separation in the three different directions (x, y, 
and z). The second diagram in Figure 20 shows the 
torque and the direction of the torque, which acts on the 
satellite. It is the sum of the torques of the different 
thrusters. The different curves show the different 
directions. Therefore, if the torque command in one 
direction exceeds the threshold, then the actuators 
counteract (the same colors in both diagrams indicate 
the same direction). The third diagram shows the 
summarized hydrazine usage of the four thruster packs. 
 

 
Figure 21: Diagrams for the Dysfunctional Behavior 

 
In Figure 21 the diagrams for the dysfunctional 

behavior of thruster pack 1 are shown. The simulation 
was executed with the same parameters as in the 
simulation of the intended behavior (Figure 20). The 
diagrams show that the failure of thruster pack 1 can be 
compensated and the system is still fulfilling its task. 
Furthermore, it is visible that the compensation of the 
start alignment takes longer and, at the beginning, is not 
as exact as in the fully functional case. However, the 
diagrams show also that the hydrazine usage is lower 
than with all thruster packs (curve for thruster pack 1 
hydrazine usage is x = 0). The lower hydrazine 
consumption results from the lower angular velocities 
used to align the satellite in this case. 
 
3.5. Results Assessment 
In the Results Assessment phase, the simulation results 
(SIRE) are elaborated with reference to the objectives of 
the reliability analysis identified in the initial phase of 
the process so to obtain important information on the 
reliability properties of the system under consideration. 



In particular, the analysis of the resulting graphs or of 
the obtained data can be conducted. The use of domain 
experts should not be underestimated to obtain a good 
analysis of the results and their evaluation, since an 
effective re-design of the system is also an outcome of a 
deep knowledge of the domain. These analyses are able 
to give information about the reliability performances of 
the ADCS system under consideration as reported in the 
Reliability Analysis Report (RAR) document; moreover, 
they also provide suggestions to improve the reliability 
of the system proposing alternative design solutions as 
reported in the Design Suggestions Report (DSR) 
document. 

A great part of these analyses are directly 
performed in Simulink, whereas more advanced 
analyses are also performed by external tools after 
exporting the results obtained through the Matlab 
environment. 

The ADCS with its intended and dysfunctional 
behavior, which is the system under consideration, can 
be improved by analyzing the results of the simulation 
execution. A variation of the parameters expands the 
understanding of the reliability of the system. Some 
failures, which were created, have a deep impact on the 
system; therefore a failure management must be created 
to solve these problems, while other failures have 
almost no impact on the reliability of the system. The 
following simple example makes this clearer. The 
failure mode blocking of a valve causes that the effected 
thruster cannot be used anymore. Due to the redundant 
thrusters the only impact is an increased maneuver 
duration, because only half of the thrust for creating the 
torque will be available. The system itself will however 
not fail. An opposite failure is the failure mode sticking 
for a valve. This failure mode causes a constant fuel 
flow and thruster use. Due to this fault a different 
failure will happen: the system will counteract and 
therefore, the opposite thrusters will be activated. This 
holds the satellite in position, but the whole time fuel 
will be required, until the tank is empty. This failure 
leads to a fail of the whole system. Looking on these 
failures, a system design with an extra valve in front of 
the whole thruster could be developed. To enable the 
failure detection, a sensor surveying the fuel flow is also 
required. 

Furthermore the reliability simulations lead to 
other aspects which could be considered. For example, 
the whole system fails when the fuel tank is empty. On 
the other hand the system has a longer lifetime, if less 
fuel is used. The simulation of the dysfunctional 
behavior showed, that with longer acquisition times 
allowed for the system, the fuel consumption sinks. The 
satellite will also reach its target, but with more time 
required for the target acquisition and with larger 
deviations from the target attitude. The attitude 
accuracy is required by the payload camera looking 
towards the earth surface under a specific angle. The 
availability of the camera drops if the acquisition time 
increases. This results lead to new requirements, which 
could lead to a change in the mission specification. 

4. CONCLUSIONS 
In the paper RAMSAS, a recently proposed model-
based method which supports the reliability analysis of 
systems through simulation, has been exploited for the 
reliability analysis of an Attitude Determination and 
Control System (ADCS) of a satellite. Specifically, 
according to the RAMSAS proposal, the derivation of a 
simulation model from a SysML system model for both, 
the functional and dysfunctional system behavior, has 
been shown. The concrete exploitation of RAMSAS has 
allowed appreciating its effectiveness and suitability 
both in the system structural and behavioral modeling 
and in the evaluation through simulation of the system 
reliability performances. Moreover, as SysML is one of 
the standard modeling languages for Systems 
Engineering, the integration of such simulations into the 
system design enables a seamless development process. 
Indeed, the design can be developed in one SysML 
model from the modeling of functional and non-
functional requirements up to the designed behavior 
simulation. Thus the impact of topological and 
parametrical system changes on both, the functional and 
non-functional system requirements, can be observed in 
the same model. 

With reference to the presented case study, by the 
simulation of both, the functional and the dysfunctional 
behavior in one model, it was found out that the ADCS 
system is more fuel efficient in one of the fault modes. 
The combined simulations can thus lead to interesting 
insights about the system behavior. 

For the future, it is desirable to build up the SysML 
model in a more automated manner so to allow for a 
more flexible analysis of the impact of different design 
choices, such as topological system changes, on the 
reliability performances of the system. 
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