EXPERIMENTING THE RAMSAS METHOD IN THE RELIABILITY

ANALYSIS OF AN

ATTITUDE DETERMINATION AND CONTROL SYSTEM (ADCS)

Alfredo Garro @, Johannes Gro®, Marius Riestenpatt gen. Richtef”, Andrea Tundis®

®Department of Electronics, Computer and Systemr8ete (DEIS), University of Calabria, Via P. BuctiG 87036,
Rende (CS), Italy.
®)nstitute for Statics and Dynamics of Aerospacei@tres, University of Stuttgart, Pfaffenwaldring, »-70569
Stuttgart, Germany.

@rgarro, atundis}@deis.unical.it’gross@isd.uni-stuttgart.de

ABSTRACT

For the reliability analysis of modern large-scale
systems new techniques centered on model-based
approaches are emerging. Benefitting from the akésl
modeling practices these techniques incorporateiskee

of simulation to flexibly evaluate the system rbligy
indices and compare different design choices. Ia th
context, RAMSAS, a model-based method which
supports the reliability analysis of systems thitoug
simulation, has been recently proposed. This paipes

at further evaluating the effectiveness and suitglof
RAMSAS through a real case study concerning the
reliability analysis of an Attitude Determinatiomd
Control System (ADCS) of a satellite.

Keywords: System Reliability Analysis, Model-Based
Systems Engineering, Simulation, Satellite Systems.

1. INTRODUCTION

Reliability, which represents the ability of a gyt to
perform its required functions under stated coodgi

for a specified period of time, is a key requiremgn
satisfy especially for mission critical systems whe
system failures could cause even human losses @Dods
and Nolan 2001). Moreover, Reliability is strongly
related to other main properties such as: Availgbil
which is the proportion of time a system is in a
functioning condition defined at design time;
Maintainability, which represents the ease with ahhi
maintenance of a system can be performed in
accordance with prescribed requirements; Safetjgtwh
takes into account the effects of the system on its
surrounding environment to prevent, eliminate and
control hazards.

Several techniques for performing quantitative and
qualitative Reliability Analyses are currently dabie
(Dodson and Nolan 2001). Specifically, quantitative
analysis techniques (such as Series-Parallel system
reliability analysis and Markov Chains) are basedle
identification and modeling of physical and logical
connections among system components and on the
analysis of their reliability through statisticalethods
and techniques. Qualitative analysis techniques taim

identify the possible system failures, their raté o
occurrence and local/global effects on the systertos
individuate corrective actions; two main technigaes
currently exploited: FMECA (Failure Modes Effects
and Critical Analysis) and FTA (Fault Tree Analysis
Moreover, with the increasing adoption of software
components in many modern systems, some extensions
of the above mentioned techniques which were
originally conceived mainly for electromechanical
systems are provided for embedded and software
intensive systems (e.g. S-FMECA, S-FTA) along with
specific software-oriented techniques (e.g. HSIA,
SCCFA, PSH) (ECSS-Q80-03 2006). Nevertheless, the
increase in both system complexity and accuracy
required in the reliability analysis often goes &y the
capabilities of the so far mentioned techniquesctvhi
are mainly based on statistical and probabilisticlg
and on the hierarchical decomposition of the system
terms of its components. Moreover, their integratio
typical system development processes, and espetiall
the design phases, is quite difficult and thenrthee is
often postponed to the later development stages (e.
system verification). As a consequence, new teclasq
are emerging which are centered on model-based
approaches so to benefit from the available modelin
practices and which incorporate the use of sinutetd
flexibly evaluate the system reliability indices dan
compare different design choices (Cressent et @112

Iwu et Al. 2007; Oren and Yilmaz 2006). However,
despite a general consensus on the advantages that
could derive from the exploitation of model-based
approaches for system reliability analysis, the abe
these techniques has been traditionally unusuahasd
not been recommended by international standardk unt
recently (IEC 61508, 2010). This delay in the adwopt

is mainly due to the lack of methods able to irgégr
available modeling languages, tools and technigues
consistent modeling framework.

To contribute to fill this lack, RAMSAS, a model-
based method for the Reliability Analysis of System
through simulation has been recently proposed (Garr
and Tundis 2012a-b-c). In particular, RAMSAS airhs a
combining in a unified framework the benefits of

popular OMG modeling languages (UML, SysML) with
the wide adopted Mathworks simulation and analysis
environments (Matlab, Simulink).

RAMSAS has been experimented in the avionics
domain for the reliability analysis both of a Langli
Gear System (Garro, Tundis and Chirillo 2011) ahd o
Flight Management System (Garro and Tundis 2012b);
and in the automotive domain for the reliabilityalyrsis
of an Electronic Stability Control (ESC) system (fea
and Tundis 2012a). This paper aims at further
evaluating the effectiveness and suitability of RBAS
through the reliability analysis of an Attitude
Determination and Control System (ADCS) (Wertz
1978) of a satellite.

The rest of the paper is structured as follows: in
Section 2 the RAMSAS method is briefly described
whereas in Section 3 its exploitation for the taility
analysis of an Attitude Determination and Control
System (ADCS) of a satellite is reported; finally,
discussion about the lessons learned and futueares
directions concludes the paper.

Table 1: Phases of the RAMSAS method and related
work-products

Phases Input work-products Output work-
products
Reliability System Design Model Reliability Analysis
Requirement (SDM), System Objectives (RAO)
Analysis Requirements (SR)
System System Design Model System Model for
Modeling (SDM), Reliability Analysis | Reliability Analysis
Objectives (RAO) (SMRA)
System System Model for Reliability| Simulation Results
Simulation Analysis (SMRA), (SIRE)
Reliability Analysis
Objectives (RAO)
Results Simulation Results (SIRE),| Design Suggestiong
Assessment Reliability Analysis Report (DSR),
Objectives (RAO) Reliability Analysis
Report (RAR)

2. THE RAMSAS METHOD

RAMSAS is a model-based method which supports the
reliability analysis of systems through simulatibg
providing a classical iterative process consisthdpur
main phasesReliability Requirements Analysis, System
Modeling, System Smulation, and Results Assessment.
These phases are reported in Table 1 along witih the
input and output work-products. Specifically, ineth
Reliability Requirements Analysis phase the objectives
of the reliability analysis are specified and thbability
functions and indicators to evaluate during the
simulation are defined. In th&/stem Modeling phase,
the structure and behavior of the system are mddale
SysML (OMG Systems Modeling Language) by using
zooming in-out mechanisms [9]; moreover, beside the
intended system behaviors, specifidysfunctional
behaviors and related tasks, which model the onset,
propagation and management of faults and failuaes,
introduced. In the System Smulation phase, the
previously obtained models of the system are

represented in terms of the constructs offered Hay t
target simulation platform, then simulations are
executed so to evaluate the reliability performante
the system also on the basis of different operating
conditions, failure modes and design choices. Binal
simulation results are analyzed with respect to the
objectives of the reliability analysis; if necessamew
partial or complete process iterations are executed

RAMSAS is strongly related to the proposal
presented in (Cressent et al., 2011), however, as
RAMSAS strongly relies on the Method Engineering
paradigm (Henderson-Sellers 2003) it provides & sel
consistent method fragment for system reliability
analysis which can be easy pluggable in variousgha
of a typical system development process rangingfro
the design to the testing phases so to complentkat o
well-known and wide adopted techniques for system
reliability analysis (e.g. FMECA, FTA, RBD) by
providing additional analysis capabilities.

A more complete description of RAMSAS can be
found in (Garro and Tundis 2012b); in the following
Section its exploitation for the reliability analyof the
ADCS of a satellite is showed and discussed inildeta

3. RELIABILITY ANALYSIS OF AN ATTITUDE
DETERMINATION ~ AND CONTROL
SYSTEM (ADCS)

3.1. System Description

The satellite under survey is the hypothetical Fae
mission from literature based on (Wertz 1999) waith
refined system design from (Gross 2012a and b). The
mission objectives of FireSat are to detect, arabd
monitor forest fires. Therefore the satellite’sitite
Determination and Control System (ADCS) has to
provide (among other modes) the ability for thesHiged

to scan the area below the satellite on the eartlace

to detect fires. The corresponding mode is calledirn
pointing mode, which means that the satellite is
pointing towards the earth’'s center. The satelige
orbiting the earth at an altitude of ~700 km overund,
which is called a low-earth orbit (LEO). Resultifigm

its altitude, the satellite has to turn with a dans
angular velocity once it is aligned to nadir paigti In
Figure 1 the activation of the nadir-pointing mode
shown. After the acquisition of the attitude, tlaylpad
camera of the satellite surveys a swath of a certai
width on the ground below the satellite.

Ground Swath
T

Earth surface T ‘W i,
i A

Figure 1: Sketch of the satellite flying over aefin
target pointing mode

The necessary adjustment of the satellite’s attitud
and its angular velocity is attained by applyingotes
on the satellite. The Attitude Determination anchtol
System (ADCS) contains therefore thrusters which
imply a torque on the satellite in orbit. By firing
different thrusters at the corners of the box-sHape
satellite, the satellite can be turned aroundxaka

3.2.Reliability Requirements Analysis

The ADCS of the satellite has to fulfill the furanal
requirements for the alignment of the satellite.eTh
system consists of sensors, actuators and the am-bo
computer controlling the system. The thrustersusex
as the actuators in the system. Due to their missio
critical role there are redundant thruster packse T
sensors determine the angular velocity and theud#i
angles of the satellite. The on-board computer d&as
navigation unit, which calculates with the sensatad
the target alignment of the satellite. Afterwardse
commands for the actuators are calculated, baseideon
resulting data of the navigation.

This chain of activities (determine attitude,
calculate action, execute commands) has to bdlddlfi
over the whole lifetime of the satellite by the ABC
Since the functional requirement for attitude cohtan
be reached by several combinations of the redundant
thruster packs, the evaluation of non-functional
requirements for system reliability has to be cedpl
with the functional analysis of the system.

3.3. System Modeling

In the System Modeling phase the structure and theth
intended and dysfunctional behavior of the system
under consideration are represented in SysML by
executing four modeling activities (see Garro and
Tundis 2012b):System Sructure Modeling, Intended
Behavior Modeling, Dysfunctional Behavior Modeling
and Behavior Integration. Each of these activities will
be described in the following sub-sections with
reference to the ADCS.

3.3.1. System Structure Modeling

In the System Structure Modeling activity, the system
structure is modeled by using SysNBlocks following

a top-down approach so to obtain a hierarchical
decomposition of the system (e.g. system, subsgstem
equipment, and components). Specifically, eachegyst
entity is represented by a SysNBlock and modeled by
both aBlock Definition Diagram (BDD) and arnternal
Block Diagram (IBD). As an example, the BDD of the
ADCS system of Figure 2 shows that the ADCS
consists of the following subsystemitightSoftware,
Actuators, Sensors, VehicleDynamics, and the
PointingMode. For each system block, its input and
output interfaces are specified according to the
following template: <SourceBlock DestinationBlock
PortName_InputOr OutputPortType>.

bdd [Package] i 1

A_ADCS_/ o i inationAndC

ADCS_VD_BodyStates_OUT

ADCS_VD_Force_m

ADCS_VD_Torques_IN
L
o ot o
‘ <block>
T 0. 0
ES 1 0 T F5_S_Sensoroutput_m | FighESoftware
“Blode> VD_ADCS_BodyStates_ouT
VehicleDynamics - FS_A_FiightSoftwareOuptut_OUT
VD_ADCS_Torques_IN
FS_PM_Mode TN
VD_ADCS_Force_H

| i sblocks S_FS_SensorOutput_OUT

Sensors
S_VD_BodyStates_ I

=
“block» A_Hydrazine_OUT
Actuators

<block»
e i PointingMode
\VD_Torques_(A_FS_FightSoftwareOuptut_IN

A_VD_Forces_OUT 7
_VD_f : (A_ADCS_ActuatorCMD_OUT PM_FS_Mode_OUT

Figure 2: Block Definition Diagram of the ADCS

For providing a description of the internal struetu
of a block in terms of the organization of its campnt
blocks an IBD is introduced. As an example, the
internal structure of the ADCS is reported in Feg@rin
which the component subsystems, their connectinds a
interaction paths along with their operations and
attributes, are represented.

ibd [block] i L 1

ADCS_VD_Torques_IN

1 itsVehicleDynamics

onlode
2 o u

| FS_A_FightSoftwareOuptut_OUT

Figure 3: Internal Block Diagram of the ADCS

By applying zooming-in mechanisms the system
block identified after the first decomposition (d&gure
2) can be further decomposed so to reach a deeypdr |
of decomposition. As an example, the structurehef t
Actuator subsystem in terms of its components
(ThrustersControl and ComputeBodyForces) is shown
by the BDD diagram in Figure 4 whereas the
connections among them are highlighted in the IBD
diagram in Figure 5.

bdd [Package] SystemModelingPkg [Actuators]

«blocks
A_VD_Torques_OUT Actuators
A_FS_FiightSoftwareOuptut_IN
A_VD_Forces_oOUT
A_ADCS_ActuatorCMD_OUT
A_Hydrazine_OUT

P 1
1
«blocks TC_A_FliightSoftwareOutput_IN
ThrustersControl | 1¢c_car_Thrusterforces_oUT 1
«block>
CBF_TC_Thr ces TN Comp dyForces
CBF_A_Hydrazine_OUT
CBF_A_VD_Forces_OUT
CBF_A_VD_Torques OUT

Figure 4: Block Definition Diagram of the Actuators
subsystem

ibd [block] Actuators [Actuators]
A_ADCS_ACtUatorCMD_

TC_A_FlightSoftwareOutput_IN

1 itsThrustersControl

CBF_A_VD_Forces_OUT
1 iLr.ComputeBodyForces_ A_VD_Torg
AFSF ptut_IN N i e
Cperations
[generateTorques BF_A_VD_Torques_OUT
(] sendThrusterForces

CBE_A_Hydrazine_OUT |

Lol
CBF_TC_ThrustersForces_IN

A_Hydrazine_OUT

Figure 5: Internal Block diagram of the Actuators
subsystem

In Figure 6 the structure of the FlightSoftware
subsystem (see Figure 2) in terms of its components
(Navigation and AttitudeControl) is reported exploiting
a BDD, whereas its internal structure is highlighta
Figure 7 through an IBD.

bdd [Package] SystemHodelingpkg [FlightSoftware]
<block»
FlightSoftware EE e
FS_A_FightSoftwareOuptut_OUT

—

eblocks
AC_FS_Position_ECEF | yavigation

FS_S_Sensoroutput_MN

< 1
1
AC_FS_TorqueCMD_OUT

ck
/AttitideControl
AC_FS_Atterr_OUT
AC_N_PointingCommand_IN
AC_FS_Velodity ECEF FS_N_FS_Q_ECD2Body_IN

N_FD_Sensorfailure_IN L N_FS_NavMode TN
N_AC_PointingCommand_ouT - -
AC_FS_WavMode T N_FS_PropoulsionCommand_OUT

Figure 6: Block Definition the

FlightSoftware subsystem

Diagram of

ibd [block] FlightSoftware [FlightSoftware]

AC_FS_TorqueCMD_OuUT

FS_N_FS5_Q ECT2Body ™ |1 itsAttitideControl

T Ty > =
: N_F5_NavMode TN | ames

AC_N_PointingCommand_IN | Operations,
FS_PM_Mode_Ii ; e

,,,,,,,,,,,,,,,,,, AC_FS_Atterr_OUT

: FS_A I _OUT
Atirbutes :

j >
o |

Figure 7: Internal Block Diagram of the FlightSoére
subsystem

3.3.2. Intended Behavior Modeling

The Intended Behavior Modeling activity takes as input
the hierarchical structure of the system as obthine
during the System Structure Modeling activity (See
Section 3.3.1) and specifies the intended behafithie
system by following a bottomrup approach.
Specifically, the behavior of the system entiti¢she
lowest level in the hierarchy, oteaf level (e.qg.
component level), are first specified; then theavwatr

of the entities at higher levels of abstractionnam-|eaf
levels (e.g. subsystem and system level), are modeled
by specifying how the enclosed entities participatel
determine the behavior of each considered enclosing
entity.

Depending on both, the characteristics of the
behavior and the abstraction level to represeffgrdnt
type of SysML diagrams can be exploited to model th
behavior of a given entity:Activity, Sequence,
Parametric, and Satechart Diagrams (see Garro and
Tundis 2012b).

With reference to the ADCS, its behavior depends
on the behavior of its subsystemBlightSoftware,
Actuators, Sensors, PointingMode, VehicleDynamics)
and their interactions. In particular, tRéightSoftware
subsystem is the brain of the system as it takes th
decisions to control the satellite system; wherdhas,
Actuators subsystem is used to apply a torque on the
satellite. In turn, the behavior of thelightSoftware
depends on the behavior of both tNavigation and
AttitudeControl components; whereas the behavior of
an Actuators subsystem depends on the behavior of
both the ThrustersControl and ComputeBodyForces
components, and so on.

In Figure 8 the intended behavior of the
ThrustersControl component is shown using a SysML
Activity diagram. In particular starting from the
torque_cmds command (or signal), which is received
from the FlightSoftware, if this command is in one or
more axes over dorque_thresh threshold, then the
appropriate thrusters are set on. If the commatid fa
below thetorque thresh threshold, then the thrusters
are set off; in particular, if the thruster is sét then
the valve is closed. If the thruster is set onntliee
appropriate valve is open. Because the satelliseah@d
of its 8 corners one thruster pack consisting of 3
thrusters X,y,2), the cycle is executed 12 times. At the
end of this task, a signal dfiruster_forces, which is
composed by the single fopacksis produced and sent
in output.

act [Package] SystemHModelingPkg [ThrusterControlTask]

|

|

| [
| [cma<-torque_thresh]

|

—
>
[i-—12] | thruster forces

Figure 8: Intended Behavior of the ThrustersControl
component

In the following, the behavior of the
ComputeBodyForces component is described;
moreover, one part of it is also represented thuiaheg
exploitation of aParametric Diagram (see Figure 9).
Such behavior is defined as a set of equationsghwhi
take as input théhruster_forces signal in terms of their
single packsxyz pack i, for i=1,..,4 (wherexyz pack i
is the vector which shows which thruster of theugiter
pack is on/off) andthruster _position_i for i=1,..,4. All
those signals are used to compBtéPackl, F_Pack2,
F_Pack3, F_Pack4 (whereF_pack is a vector of forces

of the thruster pack) which in turn are exploited t
produce in output a part of titerces signals.

por [block] ComputeBodyorces [ComputeBodyForces_ o]

1 thruster_position 1y io. oo |

F_Packi

F_pack1

F_Packi

s B

F_pack2

1 xyzpadc 1 xyz_pack_i)F_pocie
!

<Gonstraintalocks
B

Rt rosniooiay thruster_position{

1 xyz_pack 2
xyz_pack_i

1 thrust ition_3| thruster_position_i
ister_position_: _p C o 2

1 xyzpack 3 xyz_pack

1 thruster_position_4 | thruster_position_i
F_packd o

FB
1 Forces
F_Packi

Behavior of the

1 xyz_pack 4 xyz_packi .

Intended
ComputeBodyForces component

Figure 9:

As described above, after defining the intended
behavior of the entities at thkeaf level (e.g. the
ThrustersControl and the ComputeBodyForces
component for theFlightSoftware subsystem), the
behavior of the entities at theon-leaf levels is
specified. As an example, the intended behaviahef
FlightSoftware subsystem can be derived and
represented through a Sequence diagram (see HiQure
which highlights the iterations among the involved
entities; the behavior specified in Figure 8 anéigure
9 is invoked by thecomputeTh() and computeForce()
messages respectively.

By applying a similar approach the intended
behavior of the whole system can be derived.

sd [block] Actuators [Actuators]

ENV :ThrustersControl :ComputeBodyForces

;l FS_Output()

torques_cmds()

icomputeTh()
parallel

generateThX()

jenerateThY|

generateThZ()
:‘ getNavMode()
3 generateThrusterForces()

sendThrusterforces()

:‘eompu tefForce()

parallel
sendTorques()

sendForces()

sendHydrazineUsage()

;‘ sendActuator_cmds()

Figure 10: Intended Behavior of the Actuators

subsystem

3.3.3. Dysfunctional Behavior Modeling
In the Dysfunctional Behavior Modeling activity, the
focus is on the modeling of faults and failures,iclih

are key concepts of the system reliability analysis
Specifically, for each entity represented by a SysM
Block (see Section 3.3.1), beside the intended\beha
the behavior concerning faults and failures (ilee t
dysfunctional behavior) is specified as a set of
dysfunctional tasks (see Figure 11). These task#dco
receive as input a set tdilure events (e.g. due to the
failures of other blocks) and could, in turn, prodwas
output otherfailure events due to thefailure of the
block; moreover, internafaults (represented agault
events) can be generated and treated inside the block
possibly producing block failures (and thus output
failure events). For specifying thesdysfunctional tasks

six templates have been individuated (see Figuje 11
Fault Generation, Failure Generation, Failure
Management, Fault Management Failure Propagation,
and Failure Transformation. Moreover, five
fault/failure types could be considered (Grunskel an
Kaiser 2005): (i)reaction too late; (ii) reaction too
early; (iii) value failure; (iv) commission; and (v)
omission. By combining the individuated six
dysfunctional task types with these five faultifad
types, thirty different basic fault/failure beharab
patterns can be derived (Garro and Tundis 2012b).

«block»
SystemEntity

Intendedinput IntendedTasks

Intendedoutput

DysfunctionalTasks

(& FaultGeneration(event! TriggeringEvent event2 TimedEvent) FaulEvent
& FailureGeneration(event1-TriggeringE vent e vent2 TimedEvent):OutputF ailureEvent

[Fauttiianagementievent Fauteventy FautEvent

InputfailureEvents ‘OutputfailureEvents

P Outp
=] 1. nt2:FaukEvent):Outpt
=] 1:npi nt2: FautEvent):Outpl

Figure 11: The reference Behavioral Model of atitgnt

act [block]

[t+500
I 1 . Itg

[t+200 _

U]

TimedEvent
[t+800]

| OutputfailureEvent
[t+1000]

InputFailureEvent .

,,,,,, Actuator_Failure

Figure 12: Behavior of the

Dysfunctional
FlightSoftware Subsystem

As an example, with reference to the system under
consideration, both the FailureGeneration and
FailurePropagation templates have been exploited to
model the failure generation and failure propagatio
events of thé-lightSoftware subsystem. In particular, a
FailureGeneration task is activated by dimedEvent
(manually or by a clock) according to a set of
SepFunctions having specifidunction values anddelay
times (see Figure 12). Then, twOutputFailureSignals
are produced: (i) aSensorFailure signal which is

directly sent to theNavigation component, (i) a
Actuator_Failure signal, which is propagated outside
towards the Actuators subsystem, by applying a
FailurePropagation task.

When the Actuator_Failure signal reaches the
Actuators subsystem, it is propagated towards the
ThrusterControl component. Beside the intended
behavior of the TrusterControl component, a
FailureManagement task has been also implemented
which, starting from theActuator_Failure signal in
input, is able to handle suchputFailureSignal or
produces an OutputFailureSignal which in turn
simulates the crash of a whole thruster pack adter
specific time.

3.3.4. Behavior Integration

In the Behavior Integration activity, both the intended
behaviors and the dysfunctional behaviors modeted i
the previous modeling activities are integrateotitain

an overall behavioral model of the system and its
component entities. As an example, in order to
integrate both the FailureGeneration and
FailurePropagation task in the intended behavior of the
FlightSoftware subsystem, a new software component,
called FailureDetection, has been introduced (see
Figure 13) which implements the dysfunctional
behavior represented in Figure 12.

ibd [block] FlightSoftware [Flightsoftware]

AC_FS :mqlleCMDJllT
rs_n_FS_O_ECHﬂodv_ll;w itsAttitideControl

FD_AC_TorqueCommand | IN

Attmbutes

1 itsFailureDetection 7o

Attributes AC_N_PointingCommand_IN

Operstions

FD_FS_Actuator_Failure_OUT AC_FS_Atterr_OUT

| Sensorfailure_ouT

FD_AC_SensorOutput| IN FD‘"
N_FD]

PR
- itsNavigation

FS_S_SensorOutput_N -
T Atinbutes

AC_FS_Position_ECEF |
wr

............................. 'AC_FS_Velocity_ECEF |

Cperations,

Figure 13: Behavior Integration into the FlighScdte
subsystem

In particular, the FailureDetection component
takes as input two signals: (@nsor_outputs coming
from the Sensors subsystem and tf)que_commands
which is in a feedback. Then, theailureDetection
component produces as output (through the
FailureGeneration task) two signals: (i¥ensor_failure
which is sent to thélavigation component and (ii) an
Actuator_Failure which is sent as output (through the
FailurePropagation task) to the FlightSoftware
subsystem.

A similar model has been derived for #hetuators
subsystem.

This Behavior Integration activity closes the
System Modeling phase by delivering Bystem Model
for Reliability Analysis (SMRA) work-product.

3.4.System Simulation

The objective of theSystem Smulation phase is to
evaluate through simulation the reliability perfeanmee

of the system and, possibly, compare different gtesi
alternatives and parameters settings. In particukss
following three main activities are performekitodel
Transformation, Parameters Setting, and Smulation
Execution. Each of these activities is described in the
following sub-sections.

3.4.1. Model Transformation

In the Model Transformation activity a skeleton of an
Executable System Model (ESM) is derived from the the
System Models for Reliability Analysis (SMRA)
obtained in the previous phase. In particular, he t
current version of the RAMSAS method th&SM is
generated for the Mathworks Simulink platform which
represents a de facto standard for the simulatibn o
multi-domain dynamic and embedded systems. This
model transformation is based on a mapping between
the basic SysML and Simulink constructs; in pafticu

(i) a (simple) SysML Block is transformed into a
Simulink Block; (i) a (composite) SysML Block,
consisting of other blocks (its parts), is transfed into

a Simulink Subsystem Block; (iii) SysML FlowPorts
are transformed into Input and Output Simulink Bsic
(iv) SysML Flow Specifications, used to type
FlowPorts, are transformed into Simulink Bus Olgect
Moreover, the SysML behavioral diagrams which
model the intended and the dysfunctional system
behavior are transformed in Simulink functions and/
Stateflows, according to specific transformatiofesu

As an example, Figure 14 shows B8V model which
has been derived from the ADCS system represented,
through a SysML notation, in Figure 2 and Figure 3.

[1ADCS B

Fie Edt View Simuston Format Took Help

D=Ed& B > 1000 |Nomal - BERE . RRE®

Satellite System

‘‘‘‘‘‘‘‘‘‘‘

Ready 89% ode3

Figure 14: Executable System Model of the ADCS
system

Figure 15 represents the fulHSM model for the
Intended Behavior of the ComputeBodyForces
component, which has been derived from the
Parametric diagram in Figure 9.

[Actuators/Compute BodyForces EEE]
Fle Edt View Simuaton Format Tooks Hep
D&d& =@ P oo 000 [Momal c| BB e RrEE®
esassc == mromce|
I |
=0 -
,—Jw” TR £
a0 = N
R TR Z &
Heas 0 : ° 7
4J:Di:l&> | ke
= | :
<packD> s o
CO—wp
voerrorees | e " I
.l " (]
ey | P
T
s
|zpacka> e —‘
W"J |
.]
<pacs
Ready 29% ode3

Figure 15: Executable System Model for the Intended
Behavior of the ComputeBodyForces component

Figure 16 and Figure 17 show the behavior of the
thruster packs through Stateflows after the Behavio
Integration activities. In particular, the Stateflof the
ThrusterLogic (Figure 16) simulates the behavior of the
thruster packs. The function, shown in Figure X7, i
derived from the behavior of a thruster pack, shamvn
Figure 8. This function includes a Failure Managetne
task (in combination with the Stateflow data, segufe
16), beside the intended and dysfunctional behasfior
the thruster packs.

) Stateflow (chart) Thruster/Thruster Logic (] (=[]
Fle Edt View Simulaton Tools Format Add Patterns Help ¥
SHES imE =4 BHE > 0 EolE BRAO| W
function Il
() s torgue_crd(mode,cmd) {bad_thruster=0;}
] function
<2 | v torgue_cmd(made,emd) #_torgue_crad(1 torque_cmd(O]);
y_torgque_cmd(1 torgue_cmd[1]);
. z_torgque_crad(1 torgue_crd[2]);
i=0;
function
z_torque_crmd(mode,crmd)
i+ 2
= function thCrmd=zero ™ a
Lo fthCmd pack? =0; =41
thomd pack2 = 0, 2
=, themd packs = 0,
% thCmel packd = 0;} ==
72 [sensor_failli==1]
{bad_thruster=i+1;}
‘ failure \
[]
Ready

Figure 16: Stateflow of the Behavior of the Thruste
Pack

In Figure 18 the Stateflow for the simulation oéth
behavior of a valve is shown. The valve is for thel
connection of a single thruster. The Stateflow datas
also the intended behavior and dysfunctional beiravi
when a failure occurs.

-} Stateflow (subchart) Thruster/Thruster Logic.x_torque_cmd * BEX

Fle Edt View Simuaton Toolk Format Add Patterns Help
EEHES R 53 BEE)y 0 s EHEeH BRHO B
! function x_torque_cmd{mode,cmd)
@ {th¥ packi=0;
tise VeTmusters, #avaiable. 1hV pack2=1;
Ctherwise, zem Y- Tusters =
.. th¥.pack3=1;
é arduse Zmiser thY_packd=0;
s
P O3
Clociiise [bad_thruster==2 || bad_thruster==3]
= about xaxis {th¥=zera;
[emdstorgue_thrash] thZpackl=;
1 thZ pack2=0;
thT pack3=n;
i thZ packd=1;} —
command less than thesho, (th¥=zero0):)
22 command and sontinue
2
E f‘} o [bad_thruster]
{th¥=zerm();
Al SRR thz=zera(s}
0% =1
7: [emd=-torque_thresh]| ﬁwh‘fvpp:ci(k;:& :
th pack3=i1;
th . packd=1;
E
C/—DO: 1
[bad_thruster==1 || bad_thruster==4]
{th¥=zero();
Use Y-Thusters, i avalable.
Ctrrnis, s Weers tHZ pack1=0; 5
d [+l
Ready

Figure 17: Thruster Pack failure management for x-
torque commands

<) [Stataflow (chart) Thruster/ValveBehavisur/ThrusterX¥alves/FuelConnectionsLogicThrusterx ValveFailures [E][E]5)
Fle Edit View Simuation Took Format Add Patterns Help =

FHE s @ e+ HE > 1 1 | pESsE BRAG B

< A
® thruster==0]

b

=

- Closed

during: pack1=0;

[thruster==1]
[Failure Event==0

Bl [Stick [FailureEvent==0] / 2\
—_ | |during: pack1=1; N\

FailureEvent=>0]
: [Failure Event<=0]

£1 R

[Failure Event==0] \

Blocking
during: pack1=0;

[thruster==0]

Open
during: packl=1;
i

- [thruster==1]

Reatly

Figure 18: Stateflow of the Behavior of a Valve

3.4.2. Parameters Setting

Before starting the simulation, several system and
configuration parameters can be set to evaluatersys
reliability performance in different simulation s@gios.

In the Parameters Setting activity, theESM is refined so

to allow the flexible setting of system configucatiand
simulation parameters which can be tuned accortting
both, the characteristics of the operative scen&sio
simulate and the failure modes to analyze (by gatim
the settings of the faults and failures generation,
propagation and management tasks).

For the ADCS different parameters can be set. One
parameter is thetorque thresh of which variation
determines the operating range of the thrustenshé&uy
the specific impulse (Isp) of the thrusters can be
changed, which represents the variation of thesteru
and/or fuel. The position of the thruster packs atso
be changed. This variation changes the lever fer th
torque calculation. These are only a few examples,
explicit for the actuators, which show the flexityil
range of the system.

As an example, Figure 19 shows the Model
Explorer panel of Simulink by which the main
parameters of the ADCS system can be tuned
opportunely.

Figure 19: A Screenshot of the Parameters Setting
activity

)

. cx]
Sross

0 100 200 300 400 500 600 700 800 900 1000
time [s]

Figure 20: Diagrams for the Intended Behavior

3.4.3. Simulation Execution
In this activity the resultindgeSM, which is a complete
executable Simulink model, is represented as aarktw
of blocks. This model is executed according to a
synchronous reactive model of computation: at each
step, Simulink computes, for each block, the set of
outputs as a function of the current inputs andbtbek
state, then it updates the block state. During the
simulation faults and failures are injected (by
TimedEvent or TriggeringEvent) and/or caused to stress
and analyze the behavior of the ADG®&tem. At the
end of this activity, the data generated from the
simulations are reported in th&mulation Results
(S RE) work-product to be analyzed in the next phase.
Executing the system allows, beside parameter
variation, the simulation of the system behaviarmimh
the failure of some components. The simulated failu
types can be distinguished in two main types. Fitst
failure of a thruster pack with all three thrustees be
simulated. All three thrusters of the thruster pack out
of order. The failure is compensated through the afs
other thrusters (see Figure 17). The intended ehiwic
raising the torque is with the thrusters in y-axis.
However, if one of the used thrusters is defectikien
the failure management tries to use the thrustayseal
in z-axis to fulfil the command. Second, the
dysfunctional behavior of a valve, between the fuel
connection and the thruster, is shown. As repoited
Figure 18, while opening, the valve could block and
stay closed. Further, while closing, the valve datick

and stay open. In the following sections two exaspl
of simulation executions are described.

In Figure 20 the intended behavior of a simulation
is illustrated. The simulation begins with a start
alignment of the satellite. The results of the datian
are illustrated within the three diagrams plottedrahe
simulation time. The topmost diagram shows theuerq
command, calculated by the FlightSoftware subsystem
The torque threshold is 0.2 Nm. This means the
maximum difference between the required torqueafor
target alignment and the actual alignment in ars,axi
which is allowed, is 0.2 Nm. If the threshold is
exceeded, then the thrusters should create a tdojue
reach the intended alignment. The three differentes
are the separation in the three different direstipn v,
and z). The second diagram in Figure 20 shows the
torque and the direction of the torque, which actghe
satellite. It is the sum of the torques of the atiéht
thrusters. The different curves show the different
directions. Therefore, if the torque command in one
direction exceeds the threshold, then the actuators
counteract (the same colors in both diagrams itelica
the same direction). The third diagram shows the
summarized hydrazine usage of the four thrustekgpac

& CEl
T o o Toos Dot ko ko B

|
100 200 300 400 600 700 800 900 1000

500
time [s]

i i |
:] I‘ [1N] | I

|
od 1L
020 100

| |
L 1]
200 300 400 500 600 700 800 900 1000

100 200 300 400

600 700 800 l 1000

500
time [s]

Figure 21: Diagrams for the Dysfunctional Behavior

In Figure 21 the diagrams for the dysfunctional
behavior of thruster pack 1 are shown. The sinutati
was executed with the same parameters as in the
simulation of the intended behavior (Figure 20).eTh
diagrams show that the failure of thruster paclad e
compensated and the system is still fulfilling tésk.
Furthermore, it is visible that the compensatiorthef
start alignment takes longer and, at the beginnggot
as exact as in the fully functional case. Howeve,
diagrams show also that the hydrazine usage isrlowe
than with all thruster packs (curve for thrusteckpd
hydrazine usage is x = 0). The lower hydrazine
consumption results from the lower angular velesiti
used to align the satellite in this case.

3.5.Results Assessment

In the Results Assessment phase, the simulation results
(SRE) are elaborated with reference to the objecties o
the reliability analysis identified in the initighase of
the process so to obtain important information oa t
reliability properties of the system under considien.

In particular, the analysis of the resulting graphsof
the obtained data can be conducted. The use ofidoma
experts should not be underestimated to obtaincal go
analysis of the results and their evaluation, sinoce
effective re-design of the system is also an outcofra
deep knowledge of the domain. These analyses e ab
to give information about the reliability perforntas of
the ADCS system under consideration as reportéakein
Reliability Analysis Report (RAR) document; moreover,
they also provide suggestions to improve the réiigb

of the system proposing alternative design solstias
reported in theDesign Suggestions Report (DSR)
document.

A great part of these analyses are directly
performed in Simulink, whereas more advanced
analyses are also performed by external tools after
exporting the results obtained through the Matlab
environment.

The ADCS with its intended and dysfunctional
behavior, which is the system under consideratam,
be improved by analyzing the results of the sinoiat
execution. A variation of the parameters expands th
understanding of the reliability of the system. ®om
failures, which were created, have a deep impac¢hen
system; therefore a failure management must bdettea
to solve these problems, while other failures have
almost no impact on the reliability of the systefhe
following simple example makes this clearer. The
failure modeblocking of a valve causes that the effected
thruster cannot be used anymore. Due to the redtinda
thrusters the only impact is an increased maneuver
duration, because only half of the thrust for dreathe
torque will be available. The system itself willviever
not fail. An opposite failure is the failure mosecking
for a valve. This failure mode causes a constaet fu
flow and thruster use. Due to this fault a différen
failure will happen: the system will counteract and
therefore, the opposite thrusters will be activafElis
holds the satellite in position, but the whole tifoel
will be required, until the tank is empty. Thislfme
leads to a fail of the whole system. Looking onsthe
failures, a system design with an extra valve amffrof
the whole thruster could be developed. To enabde th
failure detection, a sensor surveying the fuel flewalso
required.

Furthermore the reliability simulations lead to
other aspects which could be considered. For exampl
the whole system fails when the fuel tank is emfy.
the other hand the system has a longer lifetiméesié
fuel is used. The simulation of the dysfunctional
behavior showed, that with longer acquisition times
allowed for the system, the fuel consumption sifikee
satellite will also reach its target, but with mdrme
required for the target acquisition and with larger
deviations from the target attitude. The attitude
accuracy is required by the payload camera looking
towards the earth surface under a specific anghe T
availability of the camera drops if the acquisitibme
increases. This results lead to new requiremerghw
could lead to a change in the mission specification

4. CONCLUSIONS

In the paper RAMSAS, a recently proposed model-
based method which supports the reliability analydi
systems through simulation, has been exploitedHer
reliability analysis of an Attitude Determinatiomd
Control System (ADCS) of a satellite. Specifically,
according to the RAMSAS proposal, the derivatioraof
simulation model from a SysML system model for hoth
the functional and dysfunctional system behavi@s h
been shown. The concrete exploitation of RAMSAS has
allowed appreciating its effectiveness and suiitgbil
both in the system structural and behavioral modeli
and in the evaluation through simulation of theteys
reliability performances. Moreover, as SysML is afe
the standard modeling languages for Systems
Engineering, the integration of such simulatiorts ithe
system design enables a seamless development groces
Indeed, the design can be developed in one SysML
model from the modeling of functional and non-
functional requirements up to the designed behavior
simulation. Thus the impact of topological and
parametrical system changes on both, the functiamal
non-functional system requirements, can be obsearved
the same model.

With reference to the presented case study, by the
simulation of both, the functional and the dysfimmal
behavior in one model, it was found out that theG&D
system is more fuel efficient in one of the faulbdes.
The combined simulations can thus lead to intargsti
insights about the system behavior.

For the future, it is desirable to build up the I8Yys
model in a more automated manner so to allow for a
more flexible analysis of the impact of differemsign
choices, such as topological system changes, on the
reliability performances of the system.

ACKNOWLEDGMENTS
Andrea Tundis was supported by a grant funded én th
framework of the “POR Calabria FSE 2007/2013".

REFERENCES

Cressent R., Idasiak V., Kratz F., David P., 2011.
Mastering safety and reliability in a model based
process. Proceedings of Reliability and
Maintainability Symposium (RAMS), January 24-
27, Lake Buena Vista (Florida, USA).

Dodson, B., Nolan, D., 2001Practical Reliability
Engineering. John Wiley & Sons Ltd.

ECSS-Q80-03, 2006. Space product assurance:
Methods and techniques to support the assessment
of software dependability and safety. ESA
Publications Division.

Garro A., Tundis A., 2012a. Enhancing the RAMSAS
method for System Reliability Analysis: an
exploitation in the automotive domain. To appear
in the Proceedings of the 2nd Int. Conf. on
Smulation and Modeling Methodologies,
Technologies and Applications (SSMULTECH),
28-31 July, Rome (ltaly).

Garro A., Tundis A., 2012b. Modeling and Simulation
for System Reliability Analysis: The RAMSAS
Method. Proceedings of the 7th IEEE
International Conference on System of Systems
Engineering (IEEE SoSE), 16-19 July, Genova
(Italy).

Garro, A., Tundis, A., 2012c. A model-based method
for system reliability analysid?roceedings of the
Symposium on Theory of Modeling and Smulation
(TM9), 26-29 March, Orlando (Florida, USA).

Garro, A., Tundis, A., Chirillo, N., 2011. System
reliability analysis: a model-based approach and a
case study in the avionics industBroceedings of
the 3rd Air and Space Int. Conf (CEAS). 24-28
October, Venice (Italy).

Grol3, J. Rudolph, R. 2012a. Generating Simulation
Models from UML - A FireSat Example.
Proceedings of the Symposium on Theory of
Modeling and Smulation (TMS), 26-29 March,
Orlando (Florida, USA).

Grol3, J., Rudolph, R., 2012b. Dependency Analysis i
Complex System Design using the FireSat
Example.Proceedings of the INCOSE Symposium,
Rome (lItaly).

Grof3, J., Rudolph, R., 2011. Hierarchie von
Entwurfsentscheidungen im modellbasierten
Entwurf komplexer Systeme. Tag des Systems
Engineering der GfSE, Hamburg (Germany).

Grunske, L., Kaiser, B., 2005. Automatic Generatibn
Analyzable Failure Propagation Models from
Component-Level Failure Annotation®roc. of
the 5th Int. Conf. on Quality Software (QSC),
Melbourne (Australia).

Harland, D.M., Lorenz, R.D. 2005pace Systems
Failures, Disasters and Rescues of Satellites,
Rockets and Space Probes. Springer Berlin,
Germany.

Henderson-Sellers B., 20034ethod engineering for
OO0 systems development. Communications of the
ACM, Vol. 46, No. 10, pp.73-78.

IEC 61508, 2010. Functional safety of
electrical/electronic/programmable electronic
safety-related systems, Parts 1-7.

Iwu, F., Galloway, A., McDermid, J., Toyn, I., 2007
Integrating safety and formal analyses using UML
and PFS. Reliability Engineering and System
Safety, 92, 156-170.

Larson, W. J., Wertz, J. R., eds. 19%ace mission
analysis and design. 3rd ed., Microcosm Press, El
Segundo (California, USA).

Oren, T.l., Yilmaz, L., 2006. Synergy of Systems
Engineering and Modeling and Simulation.
Proceedings of the Int. Conf. on Modeling and
Smulation Methodology, Tools, Software
Applications (M&S MTSA). July 31-August 2,
Calgary (Alberta, Canada).

Wertz, J., Ed. 1978%pacecraft Attitude Determination
and Control. D. Reidel Publishing Company,
Dordrecht, Netherland.

