
EXPERIMENTING THE RAMSAS METHOD IN THE RELIABILITY ANALYSIS OF AN
ATTITUDE DETERMINATION AND CONTROL SYSTEM (ADCS)

Alfredo Garro (a), Johannes Groß(b), Marius Riestenpatt gen. Richter(b), Andrea Tundis(a)

(a)Department of Electronics, Computer and System Sciences (DEIS), University of Calabria, Via P. Bucci 41C, 87036,
Rende (CS), Italy.

(b)Institute for Statics and Dynamics of Aerospace Structures, University of Stuttgart, Pfaffenwaldring 27, D-70569
Stuttgart, Germany.

(a){garro, atundis}@deis.unical.it, (b)gross@isd.uni-stuttgart.de

ABSTRACT
For the reliability analysis of modern large-scale
systems new techniques centered on model-based
approaches are emerging. Benefitting from the available
modeling practices these techniques incorporate the use
of simulation to flexibly evaluate the system reliability
indices and compare different design choices. In this
context, RAMSAS, a model-based method which
supports the reliability analysis of systems through
simulation, has been recently proposed. This paper aims
at further evaluating the effectiveness and suitability of
RAMSAS through a real case study concerning the
reliability analysis of an Attitude Determination and
Control System (ADCS) of a satellite.

Keywords: System Reliability Analysis, Model-Based
Systems Engineering, Simulation, Satellite Systems.

1. INTRODUCTION
Reliability, which represents the ability of a system to
perform its required functions under stated conditions,
for a specified period of time, is a key requirement to
satisfy especially for mission critical systems where
system failures could cause even human losses (Dodson
and Nolan 2001). Moreover, Reliability is strongly
related to other main properties such as: Availability,
which is the proportion of time a system is in a
functioning condition defined at design time;
Maintainability, which represents the ease with which
maintenance of a system can be performed in
accordance with prescribed requirements; Safety, which
takes into account the effects of the system on its
surrounding environment to prevent, eliminate and
control hazards.

Several techniques for performing quantitative and
qualitative Reliability Analyses are currently available
(Dodson and Nolan 2001). Specifically, quantitative
analysis techniques (such as Series-Parallel system
reliability analysis and Markov Chains) are based on the
identification and modeling of physical and logical
connections among system components and on the
analysis of their reliability through statistical methods
and techniques. Qualitative analysis techniques aim to

identify the possible system failures, their rate of
occurrence and local/global effects on the system so to
individuate corrective actions; two main techniques are
currently exploited: FMECA (Failure Modes Effects
and Critical Analysis) and FTA (Fault Tree Analysis).
Moreover, with the increasing adoption of software
components in many modern systems, some extensions
of the above mentioned techniques which were
originally conceived mainly for electromechanical
systems are provided for embedded and software
intensive systems (e.g. S-FMECA, S-FTA) along with
specific software-oriented techniques (e.g. HSIA,
SCCFA, PSH) (ECSS-Q80-03 2006). Nevertheless, the
increase in both system complexity and accuracy
required in the reliability analysis often goes beyond the
capabilities of the so far mentioned techniques which
are mainly based on statistical and probabilistic tools
and on the hierarchical decomposition of the system in
terms of its components. Moreover, their integration in
typical system development processes, and especially in
the design phases, is quite difficult and then their use is
often postponed to the later development stages (e.g.
system verification). As a consequence, new techniques
are emerging which are centered on model-based
approaches so to benefit from the available modeling
practices and which incorporate the use of simulation to
flexibly evaluate the system reliability indices and
compare different design choices (Cressent et Al. 2011;
Iwu et Al. 2007; Oren and Yilmaz 2006). However,
despite a general consensus on the advantages that
could derive from the exploitation of model-based
approaches for system reliability analysis, the use of
these techniques has been traditionally unusual and has
not been recommended by international standards until
recently (IEC 61508, 2010). This delay in the adoption
is mainly due to the lack of methods able to integrate
available modeling languages, tools and techniques in a
consistent modeling framework.

To contribute to fill this lack, RAMSAS, a model-
based method for the Reliability Analysis of Systems
through simulation has been recently proposed (Garro
and Tundis 2012a-b-c). In particular, RAMSAS aims at
combining in a unified framework the benefits of

popular OMG modeling languages (UML, SysML) with
the wide adopted Mathworks simulation and analysis
environments (Matlab, Simulink).

RAMSAS has been experimented in the avionics
domain for the reliability analysis both of a Landing
Gear System (Garro, Tundis and Chirillo 2011) and of a
Flight Management System (Garro and Tundis 2012b);
and in the automotive domain for the reliability analysis
of an Electronic Stability Control (ESC) system (Garro
and Tundis 2012a). This paper aims at further
evaluating the effectiveness and suitability of RAMSAS
through the reliability analysis of an Attitude
Determination and Control System (ADCS) (Wertz
1978) of a satellite.

The rest of the paper is structured as follows: in
Section 2 the RAMSAS method is briefly described
whereas in Section 3 its exploitation for the reliability
analysis of an Attitude Determination and Control
System (ADCS) of a satellite is reported; finally, a
discussion about the lessons learned and future research
directions concludes the paper.

Table 1: Phases of the RAMSAS method and related
work-products

Phases Input work-products Output work-
products

Reliability
Requirement

Analysis

System Design Model
(SDM), System

Requirements (SR)

Reliability Analysis
Objectives (RAO)

System
Modeling

System Design Model
(SDM), Reliability Analysis

Objectives (RAO)

System Model for
Reliability Analysis

(SMRA)

System
Simulation

System Model for Reliability
Analysis (SMRA),
Reliability Analysis
Objectives (RAO)

Simulation Results
(SIRE)

Results
Assessment

Simulation Results (SIRE),
Reliability Analysis
Objectives (RAO)

Design Suggestions
Report (DSR),

Reliability Analysis
Report (RAR)

2. THE RAMSAS METHOD
RAMSAS is a model-based method which supports the
reliability analysis of systems through simulation by
providing a classical iterative process consisting of four
main phases: Reliability Requirements Analysis, System
Modeling, System Simulation, and Results Assessment.
These phases are reported in Table 1 along with their
input and output work-products. Specifically, in the
Reliability Requirements Analysis phase the objectives
of the reliability analysis are specified and the reliability
functions and indicators to evaluate during the
simulation are defined. In the System Modeling phase,
the structure and behavior of the system are modeled in
SysML (OMG Systems Modeling Language) by using
zooming in-out mechanisms [9]; moreover, beside the
intended system behaviors, specific dysfunctional
behaviors and related tasks, which model the onset,
propagation and management of faults and failures, are
introduced. In the System Simulation phase, the
previously obtained models of the system are

represented in terms of the constructs offered by the
target simulation platform, then simulations are
executed so to evaluate the reliability performance of
the system also on the basis of different operating
conditions, failure modes and design choices. Finally,
simulation results are analyzed with respect to the
objectives of the reliability analysis; if necessary, new
partial or complete process iterations are executed.

RAMSAS is strongly related to the proposal
presented in (Cressent et al., 2011), however, as
RAMSAS strongly relies on the Method Engineering
paradigm (Henderson-Sellers 2003) it provides a self-
consistent method fragment for system reliability
analysis which can be easy pluggable in various phases
of a typical system development process ranging from
the design to the testing phases so to complement other
well-known and wide adopted techniques for system
reliability analysis (e.g. FMECA, FTA, RBD) by
providing additional analysis capabilities.

A more complete description of RAMSAS can be
found in (Garro and Tundis 2012b); in the following
Section its exploitation for the reliability analysis of the
ADCS of a satellite is showed and discussed in details.

3. RELIABILITY ANALYSIS OF AN ATTITUDE

DETERMINATION AND CONTROL
SYSTEM (ADCS)

3.1. System Description
The satellite under survey is the hypothetical FireSat
mission from literature based on (Wertz 1999) with a
refined system design from (Gross 2012a and b). The
mission objectives of FireSat are to detect, analyze and
monitor forest fires. Therefore the satellite´s Attitude
Determination and Control System (ADCS) has to
provide (among other modes) the ability for the satellite
to scan the area below the satellite on the earth surface
to detect fires. The corresponding mode is called nadir-
pointing mode, which means that the satellite is
pointing towards the earth’s center. The satellite is
orbiting the earth at an altitude of ~700 km over ground,
which is called a low-earth orbit (LEO). Resulting from
its altitude, the satellite has to turn with a constant
angular velocity once it is aligned to nadir pointing. In
Figure 1 the activation of the nadir-pointing mode is
shown. After the acquisition of the attitude, the payload
camera of the satellite surveys a swath of a certain
width on the ground below the satellite.

Figure 1: Sketch of the satellite flying over a fire in
target pointing mode

The necessary adjustment of the satellite’s attitude
and its angular velocity is attained by applying torques
on the satellite. The Attitude Determination and Control
System (ADCS) contains therefore thrusters which
imply a torque on the satellite in orbit. By firing
different thrusters at the corners of the box-shaped
satellite, the satellite can be turned around all axes.

3.2. Reliability Requirements Analysis
The ADCS of the satellite has to fulfill the functional
requirements for the alignment of the satellite. The
system consists of sensors, actuators and the on-board
computer controlling the system. The thrusters are used
as the actuators in the system. Due to their mission-
critical role there are redundant thruster packs. The
sensors determine the angular velocity and the attitude
angles of the satellite. The on-board computer has a
navigation unit, which calculates with the sensor data
the target alignment of the satellite. Afterwards, the
commands for the actuators are calculated, based on the
resulting data of the navigation.

This chain of activities (determine attitude,
calculate action, execute commands) has to be fulfilled
over the whole lifetime of the satellite by the ADCS.
Since the functional requirement for attitude control can
be reached by several combinations of the redundant
thruster packs, the evaluation of non-functional
requirements for system reliability has to be coupled
with the functional analysis of the system.

3.3. System Modeling
In the System Modeling phase the structure and both the
intended and dysfunctional behavior of the system
under consideration are represented in SysML by
executing four modeling activities (see Garro and
Tundis 2012b): System Structure Modeling, Intended
Behavior Modeling, Dysfunctional Behavior Modeling
and Behavior Integration. Each of these activities will
be described in the following sub-sections with
reference to the ADCS.

3.3.1. System Structure Modeling
In the System Structure Modeling activity, the system
structure is modeled by using SysML Blocks following
a top-down approach so to obtain a hierarchical
decomposition of the system (e.g. system, subsystems,
equipment, and components). Specifically, each system
entity is represented by a SysML Block and modeled by
both a Block Definition Diagram (BDD) and an Internal
Block Diagram (IBD). As an example, the BDD of the
ADCS system of Figure 2 shows that the ADCS
consists of the following subsystems: FlightSoftware,
Actuators, Sensors, VehicleDynamics, and the
PointingMode. For each system block, its input and
output interfaces are specified according to the
following template: <SourceBlock_DestinationBlock_
PortName_InputOrOutputPortType>.

Figure 2: Block Definition Diagram of the ADCS

For providing a description of the internal structure

of a block in terms of the organization of its component
blocks an IBD is introduced. As an example, the
internal structure of the ADCS is reported in Figure 3 in
which the component subsystems, their connections and
interaction paths along with their operations and
attributes, are represented.

Figure 3: Internal Block Diagram of the ADCS

By applying zooming-in mechanisms the system

block identified after the first decomposition (see Figure
2) can be further decomposed so to reach a deeper level
of decomposition. As an example, the structure of the
Actuator subsystem in terms of its components
(ThrustersControl and ComputeBodyForces) is shown
by the BDD diagram in Figure 4 whereas the
connections among them are highlighted in the IBD
diagram in Figure 5.

Figure 4: Block Definition Diagram of the Actuators
subsystem

Figure 5: Internal Block diagram of the Actuators
subsystem

In Figure 6 the structure of the FlightSoftware
subsystem (see Figure 2) in terms of its components
(Navigation and AttitudeControl) is reported exploiting
a BDD, whereas its internal structure is highlighted in
Figure 7 through an IBD.

Figure 6: Block Definition Diagram of the
FlightSoftware subsystem

Figure 7: Internal Block Diagram of the FlightSoftware
subsystem

3.3.2. Intended Behavior Modeling
The Intended Behavior Modeling activity takes as input
the hierarchical structure of the system as obtained
during the System Structure Modeling activity (See
Section 3.3.1) and specifies the intended behavior of the
system by following a bottom-up approach.
Specifically, the behavior of the system entities at the
lowest level in the hierarchy, or leaf level (e.g.
component level), are first specified; then the behavior
of the entities at higher levels of abstraction, or non-leaf
levels (e.g. subsystem and system level), are modeled
by specifying how the enclosed entities participate and
determine the behavior of each considered enclosing
entity.

Depending on both, the characteristics of the
behavior and the abstraction level to represent, different
type of SysML diagrams can be exploited to model the
behavior of a given entity: Activity, Sequence,
Parametric, and Statechart Diagrams (see Garro and
Tundis 2012b).

With reference to the ADCS, its behavior depends
on the behavior of its subsystems (FlightSoftware,
Actuators, Sensors, PointingMode, VehicleDynamics)
and their interactions. In particular, the FlightSoftware
subsystem is the brain of the system as it takes the
decisions to control the satellite system; whereas, the
Actuators subsystem is used to apply a torque on the
satellite. In turn, the behavior of the FlightSoftware
depends on the behavior of both the Navigation and
AttitudeControl components; whereas the behavior of
an Actuators subsystem depends on the behavior of
both the ThrustersControl and ComputeBodyForces
components, and so on.

In Figure 8 the intended behavior of the
ThrustersControl component is shown using a SysML
Activity diagram. In particular starting from the
torque_cmds command (or signal), which is received
from the FlightSoftware, if this command is in one or
more axes over a torque_thresh threshold, then the
appropriate thrusters are set on. If the command falls
below the torque_thresh threshold, then the thrusters
are set off; in particular, if the thruster is set off, then
the valve is closed. If the thruster is set on, then the
appropriate valve is open. Because the satellite has at 4
of its 8 corners one thruster pack consisting of 3
thrusters (x,y,z), the cycle is executed 12 times. At the
end of this task, a signal of thruster_forces, which is
composed by the single four packs is produced and sent
in output.

Figure 8: Intended Behavior of the ThrustersControl
component

In the following, the behavior of the
ComputeBodyForces component is described;
moreover, one part of it is also represented through the
exploitation of a Parametric Diagram (see Figure 9).
Such behavior is defined as a set of equations, which
take as input the thruster_forces signal in terms of their
single packs: xyz_pack_i, for i=1,..,4 (where xyz_pack_i
is the vector which shows which thruster of the thruster
pack is on/off), and thruster_position_i for i=1,..,4. All
those signals are used to compute F_Pack1, F_Pack2,
F_Pack3, F_Pack4 (where F_pack is a vector of forces

of the thruster pack) which in turn are exploited to
produce in output a part of the Forces signals.

Figure 9: Intended Behavior of the
ComputeBodyForces component

As described above, after defining the intended
behavior of the entities at the leaf level (e.g. the
ThrustersControl and the ComputeBodyForces
component for the FlightSoftware subsystem), the
behavior of the entities at the non-leaf levels is
specified. As an example, the intended behavior of the
FlightSoftware subsystem can be derived and
represented through a Sequence diagram (see Figure 10)
which highlights the iterations among the involved
entities; the behavior specified in Figure 8 and in Figure
9 is invoked by the computeTh() and computeForce()
messages respectively.

By applying a similar approach the intended
behavior of the whole system can be derived.

Figure 10: Intended Behavior of the Actuators
subsystem

3.3.3. Dysfunctional Behavior Modeling
In the Dysfunctional Behavior Modeling activity, the
focus is on the modeling of faults and failures, which

are key concepts of the system reliability analysis.
Specifically, for each entity represented by a SysML
Block (see Section 3.3.1), beside the intended behavior,
the behavior concerning faults and failures (i.e. the
dysfunctional behavior) is specified as a set of
dysfunctional tasks (see Figure 11). These tasks could
receive as input a set of failure events (e.g. due to the
failures of other blocks) and could, in turn, produce as
output other failure events due to the failure of the
block; moreover, internal faults (represented as fault
events) can be generated and treated inside the block
possibly producing block failures (and thus output
failure events). For specifying these dysfunctional tasks
six templates have been individuated (see Figure 11):
Fault Generation, Failure Generation, Failure
Management, Fault Management Failure Propagation,
and Failure Transformation. Moreover, five
fault/failure types could be considered (Grunske and
Kaiser 2005): (i) reaction too late; (ii) reaction too
early; (iii) value failure; (iv) commission; and (v)
omission. By combining the individuated six
dysfunctional task types with these five fault/failure
types, thirty different basic fault/failure behavioral
patterns can be derived (Garro and Tundis 2012b).

Figure 11: The reference Behavioral Model of an entity

Figure 12: Dysfunctional Behavior of the
FlightSoftware Subsystem

As an example, with reference to the system under
consideration, both the FailureGeneration and
FailurePropagation templates have been exploited to
model the failure generation and failure propagation
events of the FlightSoftware subsystem. In particular, a
FailureGeneration task is activated by a TimedEvent
(manually or by a clock) according to a set of
StepFunctions having specific function values and delay
times (see Figure 12). Then, two OutputFailureSignals
are produced: (i) a SensorFailure signal which is

directly sent to the Navigation component, (ii) a
Actuator_Failure signal, which is propagated outside
towards the Actuators subsystem, by applying a
FailurePropagation task.

When the Actuator_Failure signal reaches the
Actuators subsystem, it is propagated towards the
ThrusterControl component. Beside the intended
behavior of the TrusterControl component, a
FailureManagement task has been also implemented
which, starting from the Actuator_Failure signal in
input, is able to handle such InputFailureSignal or
produces an OutputFailureSignal which in turn
simulates the crash of a whole thruster pack after a
specific time.

3.3.4. Behavior Integration
In the Behavior Integration activity, both the intended
behaviors and the dysfunctional behaviors modeled in
the previous modeling activities are integrated to obtain
an overall behavioral model of the system and its
component entities. As an example, in order to
integrate both the FailureGeneration and
FailurePropagation task in the intended behavior of the
FlightSoftware subsystem, a new software component,
called FailureDetection, has been introduced (see
Figure 13) which implements the dysfunctional
behavior represented in Figure 12.

Figure 13: Behavior Integration into the FlighSoftware
subsystem

In particular, the FailureDetection component
takes as input two signals: (i) sensor_outputs coming
from the Sensors subsystem and (ii) torque_commands
which is in a feedback. Then, the FailureDetection
component produces as output (through the
FailureGeneration task) two signals: (i) sensor_failure
which is sent to the Navigation component and (ii) an
Actuator_Failure which is sent as output (through the
FailurePropagation task) to the FlightSoftware
subsystem.

A similar model has been derived for the Actuators
subsystem.

This Behavior Integration activity closes the
System Modeling phase by delivering the System Model
for Reliability Analysis (SMRA) work-product.

3.4. System Simulation
The objective of the System Simulation phase is to
evaluate through simulation the reliability performance
of the system and, possibly, compare different design
alternatives and parameters settings. In particular, the
following three main activities are performed: Model
Transformation, Parameters Setting, and Simulation
Execution. Each of these activities is described in the
following sub-sections.

3.4.1. Model Transformation
In the Model Transformation activity a skeleton of an
Executable System Model (ESM) is derived from the the
System Models for Reliability Analysis (SMRA)
obtained in the previous phase. In particular, in the
current version of the RAMSAS method the ESM is
generated for the Mathworks Simulink platform which
represents a de facto standard for the simulation of
multi-domain dynamic and embedded systems. This
model transformation is based on a mapping between
the basic SysML and Simulink constructs; in particular:
(i) a (simple) SysML Block is transformed into a
Simulink Block; (ii) a (composite) SysML Block,
consisting of other blocks (its parts), is transformed into
a Simulink Subsystem Block; (iii) SysML FlowPorts
are transformed into Input and Output Simulink Blocks;
(iv) SysML Flow Specifications, used to type
FlowPorts, are transformed into Simulink Bus Objects.
Moreover, the SysML behavioral diagrams which
model the intended and the dysfunctional system
behavior are transformed in Simulink functions and/or
Stateflows, according to specific transformation rules.
As an example, Figure 14 shows an ESM model which
has been derived from the ADCS system represented,
through a SysML notation, in Figure 2 and Figure 3.

Figure 14: Executable System Model of the ADCS
system

Figure 15 represents the full ESM model for the
Intended Behavior of the ComputeBodyForces
component, which has been derived from the
Parametric diagram in Figure 9.

Figure 15: Executable System Model for the Intended
Behavior of the ComputeBodyForces component

Figure 16 and Figure 17 show the behavior of the
thruster packs through Stateflows after the Behavior
Integration activities. In particular, the Stateflow of the
ThrusterLogic (Figure 16) simulates the behavior of the
thruster packs. The function, shown in Figure 17, is
derived from the behavior of a thruster pack, shown in
Figure 8. This function includes a Failure Management
task (in combination with the Stateflow data, see Figure
16), beside the intended and dysfunctional behavior of
the thruster packs.

Figure 16: Stateflow of the Behavior of the Thruster
Pack

In Figure 18 the Stateflow for the simulation of the
behavior of a valve is shown. The valve is for the fuel
connection of a single thruster. The Stateflow simulates
also the intended behavior and dysfunctional behavior
when a failure occurs.

Figure 17: Thruster Pack failure management for x-
torque commands

Figure 18: Stateflow of the Behavior of a Valve

3.4.2. Parameters Setting
Before starting the simulation, several system and
configuration parameters can be set to evaluate system
reliability performance in different simulation scenarios.
In the Parameters Setting activity, the ESM is refined so
to allow the flexible setting of system configuration and
simulation parameters which can be tuned according to
both, the characteristics of the operative scenario to
simulate and the failure modes to analyze (by acting on
the settings of the faults and failures generation,
propagation and management tasks).

For the ADCS different parameters can be set. One
parameter is the torque_thresh of which variation
determines the operating range of the thrusters. Further,
the specific impulse (Isp) of the thrusters can be
changed, which represents the variation of the thruster
and/or fuel. The position of the thruster packs can also
be changed. This variation changes the lever for the
torque calculation. These are only a few examples,
explicit for the actuators, which show the flexibility
range of the system.

As an example, Figure 19 shows the Model
Explorer panel of Simulink by which the main
parameters of the ADCS system can be tuned
opportunely.

Figure 19: A Screenshot of the Parameters Setting
activity

Figure 20: Diagrams for the Intended Behavior

3.4.3. Simulation Execution
In this activity the resulting ESM, which is a complete
executable Simulink model, is represented as a network
of blocks. This model is executed according to a
synchronous reactive model of computation: at each
step, Simulink computes, for each block, the set of
outputs as a function of the current inputs and the block
state, then it updates the block state. During the
simulation faults and failures are injected (by
TimedEvent or TriggeringEvent) and/or caused to stress
and analyze the behavior of the ADCS system. At the
end of this activity, the data generated from the
simulations are reported in the Simulation Results
(SIRE) work-product to be analyzed in the next phase.

Executing the system allows, beside parameter
variation, the simulation of the system behavior, during
the failure of some components. The simulated failure
types can be distinguished in two main types. First, the
failure of a thruster pack with all three thrusters can be
simulated. All three thrusters of the thruster pack are out
of order. The failure is compensated through the use of
other thrusters (see Figure 17). The intended choice for
raising the torque is with the thrusters in y-axis.
However, if one of the used thrusters is defective, then
the failure management tries to use the thrusters aligned
in z-axis to fulfill the command. Second, the
dysfunctional behavior of a valve, between the fuel
connection and the thruster, is shown. As reported in
Figure 18, while opening, the valve could block and
stay closed. Further, while closing, the valve could stick

and stay open. In the following sections two examples
of simulation executions are described.

In Figure 20 the intended behavior of a simulation
is illustrated. The simulation begins with a start
alignment of the satellite. The results of the simulation
are illustrated within the three diagrams plotted over the
simulation time. The topmost diagram shows the torque
command, calculated by the FlightSoftware subsystem.
The torque threshold is 0.2 Nm. This means the
maximum difference between the required torque for a
target alignment and the actual alignment in an axis,
which is allowed, is 0.2 Nm. If the threshold is
exceeded, then the thrusters should create a torque to
reach the intended alignment. The three different curves
are the separation in the three different directions (x, y,
and z). The second diagram in Figure 20 shows the
torque and the direction of the torque, which acts on the
satellite. It is the sum of the torques of the different
thrusters. The different curves show the different
directions. Therefore, if the torque command in one
direction exceeds the threshold, then the actuators
counteract (the same colors in both diagrams indicate
the same direction). The third diagram shows the
summarized hydrazine usage of the four thruster packs.

Figure 21: Diagrams for the Dysfunctional Behavior

In Figure 21 the diagrams for the dysfunctional

behavior of thruster pack 1 are shown. The simulation
was executed with the same parameters as in the
simulation of the intended behavior (Figure 20). The
diagrams show that the failure of thruster pack 1 can be
compensated and the system is still fulfilling its task.
Furthermore, it is visible that the compensation of the
start alignment takes longer and, at the beginning, is not
as exact as in the fully functional case. However, the
diagrams show also that the hydrazine usage is lower
than with all thruster packs (curve for thruster pack 1
hydrazine usage is x = 0). The lower hydrazine
consumption results from the lower angular velocities
used to align the satellite in this case.

3.5. Results Assessment
In the Results Assessment phase, the simulation results
(SIRE) are elaborated with reference to the objectives of
the reliability analysis identified in the initial phase of
the process so to obtain important information on the
reliability properties of the system under consideration.

In particular, the analysis of the resulting graphs or of
the obtained data can be conducted. The use of domain
experts should not be underestimated to obtain a good
analysis of the results and their evaluation, since an
effective re-design of the system is also an outcome of a
deep knowledge of the domain. These analyses are able
to give information about the reliability performances of
the ADCS system under consideration as reported in the
Reliability Analysis Report (RAR) document; moreover,
they also provide suggestions to improve the reliability
of the system proposing alternative design solutions as
reported in the Design Suggestions Report (DSR)
document.

A great part of these analyses are directly
performed in Simulink, whereas more advanced
analyses are also performed by external tools after
exporting the results obtained through the Matlab
environment.

The ADCS with its intended and dysfunctional
behavior, which is the system under consideration, can
be improved by analyzing the results of the simulation
execution. A variation of the parameters expands the
understanding of the reliability of the system. Some
failures, which were created, have a deep impact on the
system; therefore a failure management must be created
to solve these problems, while other failures have
almost no impact on the reliability of the system. The
following simple example makes this clearer. The
failure mode blocking of a valve causes that the effected
thruster cannot be used anymore. Due to the redundant
thrusters the only impact is an increased maneuver
duration, because only half of the thrust for creating the
torque will be available. The system itself will however
not fail. An opposite failure is the failure mode sticking
for a valve. This failure mode causes a constant fuel
flow and thruster use. Due to this fault a different
failure will happen: the system will counteract and
therefore, the opposite thrusters will be activated. This
holds the satellite in position, but the whole time fuel
will be required, until the tank is empty. This failure
leads to a fail of the whole system. Looking on these
failures, a system design with an extra valve in front of
the whole thruster could be developed. To enable the
failure detection, a sensor surveying the fuel flow is also
required.

Furthermore the reliability simulations lead to
other aspects which could be considered. For example,
the whole system fails when the fuel tank is empty. On
the other hand the system has a longer lifetime, if less
fuel is used. The simulation of the dysfunctional
behavior showed, that with longer acquisition times
allowed for the system, the fuel consumption sinks. The
satellite will also reach its target, but with more time
required for the target acquisition and with larger
deviations from the target attitude. The attitude
accuracy is required by the payload camera looking
towards the earth surface under a specific angle. The
availability of the camera drops if the acquisition time
increases. This results lead to new requirements, which
could lead to a change in the mission specification.

4. CONCLUSIONS
In the paper RAMSAS, a recently proposed model-
based method which supports the reliability analysis of
systems through simulation, has been exploited for the
reliability analysis of an Attitude Determination and
Control System (ADCS) of a satellite. Specifically,
according to the RAMSAS proposal, the derivation of a
simulation model from a SysML system model for both,
the functional and dysfunctional system behavior, has
been shown. The concrete exploitation of RAMSAS has
allowed appreciating its effectiveness and suitability
both in the system structural and behavioral modeling
and in the evaluation through simulation of the system
reliability performances. Moreover, as SysML is one of
the standard modeling languages for Systems
Engineering, the integration of such simulations into the
system design enables a seamless development process.
Indeed, the design can be developed in one SysML
model from the modeling of functional and non-
functional requirements up to the designed behavior
simulation. Thus the impact of topological and
parametrical system changes on both, the functional and
non-functional system requirements, can be observed in
the same model.

With reference to the presented case study, by the
simulation of both, the functional and the dysfunctional
behavior in one model, it was found out that the ADCS
system is more fuel efficient in one of the fault modes.
The combined simulations can thus lead to interesting
insights about the system behavior.

For the future, it is desirable to build up the SysML
model in a more automated manner so to allow for a
more flexible analysis of the impact of different design
choices, such as topological system changes, on the
reliability performances of the system.

ACKNOWLEDGMENTS
Andrea Tundis was supported by a grant funded in the
framework of the “POR Calabria FSE 2007/2013”.

REFERENCES
Cressent R., Idasiak V., Kratz F., David P., 2011.

Mastering safety and reliability in a model based
process. Proceedings of Reliability and
Maintainability Symposium (RAMS), January 24-
27, Lake Buena Vista (Florida, USA).

Dodson, B., Nolan, D., 2001. Practical Reliability
Engineering. John Wiley & Sons Ltd.

ECSS-Q80-03, 2006. Space product assurance:
Methods and techniques to support the assessment
of software dependability and safety. ESA
Publications Division.

Garro A., Tundis A., 2012a. Enhancing the RAMSAS
method for System Reliability Analysis: an
exploitation in the automotive domain. To appear
in the Proceedings of the 2nd Int. Conf. on
Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH),
28-31 July, Rome (Italy).

Garro A., Tundis A., 2012b. Modeling and Simulation
for System Reliability Analysis: The RAMSAS
Method. Proceedings of the 7th IEEE
International Conference on System of Systems
Engineering (IEEE SoSE), 16-19 July, Genova
(Italy).

Garro, A., Tundis, A., 2012c. A model-based method
for system reliability analysis. Proceedings of the
Symposium on Theory of Modeling and Simulation
(TMS), 26-29 March, Orlando (Florida, USA).

Garro, A., Tundis, A., Chirillo, N., 2011. System
reliability analysis: a model-based approach and a
case study in the avionics industry. Proceedings of
the 3rd Air and Space Int. Conf (CEAS). 24-28
October, Venice (Italy).

Groß, J. Rudolph, R. 2012a. Generating Simulation
Models from UML – A FireSat Example.
Proceedings of the Symposium on Theory of
Modeling and Simulation (TMS), 26-29 March,
Orlando (Florida, USA).

Groß, J., Rudolph, R., 2012b. Dependency Analysis in
Complex System Design using the FireSat
Example. Proceedings of the INCOSE Symposium,
Rome (Italy).

Groß, J., Rudolph, R., 2011. Hierarchie von
Entwurfsentscheidungen im modellbasierten
Entwurf komplexer Systeme. Tag des Systems
Engineering der GfSE, Hamburg (Germany).

Grunske, L., Kaiser, B., 2005. Automatic Generation of
Analyzable Failure Propagation Models from
Component-Level Failure Annotations. Proc. of
the 5th Int. Conf. on Quality Software (QSIC),
Melbourne (Australia).

Harland, D.M., Lorenz, R.D. 2005. Space Systems
Failures, Disasters and Rescues of Satellites,
Rockets and Space Probes. Springer Berlin,
Germany.

Henderson-Sellers B., 2003. Method engineering for
OO systems development. Communications of the
ACM, Vol. 46, No. 10, pp.73–78.

IEC 61508, 2010. Functional safety of
electrical/electronic/programmable electronic
safety-related systems, Parts 1-7.

Iwu, F., Galloway, A., McDermid, J., Toyn, I., 2007.
Integrating safety and formal analyses using UML
and PFS. Reliability Engineering and System
Safety, 92, 156–170.

Larson, W. J., Wertz, J. R., eds. 1999. Space mission
analysis and design. 3rd ed., Microcosm Press, El
Segundo (California, USA).

Oren, T.I., Yilmaz, L., 2006. Synergy of Systems
Engineering and Modeling and Simulation.
Proceedings of the Int. Conf. on Modeling and
Simulation Methodology, Tools, Software
Applications (M&S MTSA). July 31-August 2,
Calgary (Alberta, Canada).

Wertz, J., Ed. 1978. Spacecraft Attitude Determination
and Control. D. Reidel Publishing Company,
Dordrecht, Netherland.

