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INTRODUCTION 
 
Several severe problems in space industry as pointed out at prominent lieu at the Virtual Spacecraft Design (VSD) 
presentation in May 2012 at ESA Noordwijk are originating from inconsistent system data, late problem detection and 
difficult information handover between stakeholders. The idea of a central data model (e.g. the VSD initiative) to 
represent all system engineering data in one model storage can therefore be seen as an attempt towards resolving the 
aforementioned problems. Due to such a digital representation of the design parameters the traditional systems 
engineering (SE) methods can be brought to a model-based engineering (MBE) level. Thus model-based systems 
engineering (MBSE) is the next logical step in this ongoing digitization effort. When thinking further about the MBSE 
approach and its potential evolvement in the future, the current triangle of methods, processes and tools in today's 
space systems engineering however must be reconsidered. Due to the enhanced properties of digital models the MBSE 
method can now be applied in a much more comprehensive and streamlined way in the design process.  
An example of one of the new tools enabling such an advanced use of a model-based design paradigm is the Design 
Compiler 43 [1] which is used to compile a graph-based design language on the basis of UML (Unified Modeling 
Language). By supporting the model-based systems engineering method by means of graph-based design languages, 
the processes in satellite design are however as well subject to change. Traditionally, satellite design phases as 
commonly used in industry (i.e. phases 0, A-D) are characterized by different model fidelity. We want to show in this 
paper that the models from the later design phases can now be made available in earlier design phases when using 
design languages. Thus it is possible to profit excessively from modern front-loading techniques and further shorten the 
design process while steadily increasing design model quality and reliability. 
 
Convention: UML Class names are written in Italic 
       UML Attribute names are written in courant. 
 
PROBLEM DESCRIPTION 
 
One explanation why the current process of creating high fidelity models is so time-consuming may be found by 
looking at the tools that are used in satellite design. Typical commercial Engineering Suites for CFD or FEM are 
designed for a huge amount of different communities from several engineering disciplines. This allows their developers 
to invest time and money to create clear and simple user interfaces. When it comes to thermal analysis of satellite 
structures for example, the situation however is different: available Software Suites like ESATAN-TMS, or it’s 
American counterpart NASA TRASYS/SINDA G, are designed for small communities, which forces their developers 
to concentrate their capacities to satisfy the high standards of software stability and validity needed for aerospace 
applications. In this context, user interfaces for those rather exotic kinds of software are naturally far less advanced than 
those of “big” software suites, forcing system designers to spend many working hours into rather perfunctory tasks of 
model creation and adaptation. It is our belief, that these tasks can be far more automatized and simplified by improving 
the relation between abstract model-based engineering and concrete modelling in modern design tools, which are set on 
top of the classical validated engineering suites. This belief is underlined by recent publications ([2], [3], [4], [5]), 
where a design language also comprehends detailed information about the system in a reusable form.  
In this work it is shown, that also the amount of manpower (in terms of man hours) required for model creation can be 
reduced dramatically by the means of a design language. The prerequisite for saving manpower is a higher level 
information representation in a design language. From this representation, the detailed analysis models in the different 
engineering applications can be automatically derived. In this work, the basic mechanisms for the derivation of a 
thermal simulation model from a design language representation are explained. The design language used to exemplify 
this derivation is developed within the PhD-project of the first author. It is a hypothetical satellite mission for the 
detection and monitoring of forest fires called FireSat. The FireSat mission is described in more detail in literature (e.g. 



[5], [2], [3]). In the design language, the geometrical and functional aspects of this satellite are modelled. These aspects 
can be combined to generate many aspects of the thermal simulation executed in a commercial software (ESATAN-
TMS in this case). The paper explains first the modelling of the geometry in UML and the additional thermal attributes 
required for a simulation. For a more detailed simulation of the thermal properties, the integration of functional aspects, 
such as the power consumption of the different electronic boxes is shown. From these aspects FORTRAN code is 
generated to simulate the power production of the solar array in this example. The paper concludes with a display of the 
results of a detailed thermal simulation of the FireSat.  
 
GENERAL APPROACH 
 
The basic idea of a design language is that all needed design recipes can be implemented in an automated routine, so 
that ideally both geometry and functionality of the system can be deduced directly from it’s system requirements. Of 
course, such an ideal design language does not (yet) exist, and automatically generated models will always require 
adaptation and evaluation by human beings. On many (lower) levels however, perfunctory tasks can be automatized. 
For example, if the mission requirements call for a specific orbit and downlink rate, there is a finite design space with 
sensible combinations of antennas, amplifiers and so on, from which the system designer must decide if an optimum of 
mass, power consumption or something in between of both should be achieved. At the base of lodged design recipes 
and a predefined set of possible hardware combinations, an optimal result is suggested by the design compiler. In this 
work, we focus on the relation between the geometry modeling, which describes the physical appearance of the satellite, 
and the functional modeling, which depicts power and heat budget for the designed system.  
After the user has created the implicit definitions of functionality and geometry in the design language, the compiler 
creates an explicit UML model and exports all relevant information to a format that can be interpreted by a commercial 
engineering suite. In the case of ESATAN, the geometry is exported in the scripting language ESARAD, and the 
functionality exported into a MORTRAN code is generated (an extended FORTRAN77 variant). The creation of the 
high level model in the design language in this example is based on a design language for geometry.  
 
GEOMETRY MODELING 
 
In [7] the modelling of geometry in a design language is explained in greater detail. For this work, it is sufficient to 
mention just the most important elements used in the geometry model. In Fig. 1 an excerpt of the geometry class 
diagram is given. The topmost class, TopologyElement, defines the topological sub links of Components and their 
Positions. Components can have as children Shapes or other Components. If a Component has a Shape as child, it 
represents a Part. If a Component has another Component as child, it represents an Assembly (or Product). A Position 
can be placed between a Component and its child Component and thus the child will be translated by the values dx, dy 
and dz and rotated by  the angles phi, theta and psi given in the Position instance in  degrees.  
Shapes can be shapes or primitveShapes or both to a Component. This allows for the creation of two parallel 
geometry models with different model fidelity. A Component can have a shape for the geometry visualisation in e.g. 
OpenCascade or CATIA and a different primitiveShape for the thermal model representation. Below the Shape 
there are three exemplary geometrical primitives. The first is a simple Cuboid with the dimensions lengthX, 
lenghtY and lenghtZ along the three axes. The second is a Paraboloid defined by the attributes focalLength, 
height and thickness. The third is a Cylinder with the radius and the height given. All attributes are in 
millimetres.  
 

 
 

Fig. 1. Class diagram for the geometry model in UML 



In the work of [4] a UML model for the definition of a thermal simulation was developed. In Fig. 2 an extract 
comparable to Fig. 1 of the geometry model is given. Since the thermal simulation is based on a surface model the 
central element in this model is a SHELL. It contains also the concept of assemblies since a SHELL can contain other 
SHELLs by the linkSHELL. The SHELL can also be translated by a TRANSLATE and rotated by a ROTATE instance.  
 

 
Fig. 2. Class diagram with some geometric elements of the thermal model 

 
In the lower part of Fig. 2 some of the primitives also available in ESATAN are shown inheriting from SHELL. The   
SHELL_SCS_BOX is comparable to the Cuboid in the geometry class diagram. The height equals the lengthZ of a 
cuboid and xmax and ymax compare to lengthX and lengthY. The SHELL_SCS_PARABOLOID compares to an 
Paraboloid in the geometry model. The flength is the focalLength and hmax is the height of an Paraboloid. 
The additional parameters of the  model are hmin for a lower boundary of the height and angles angmin and angmax 
to express the cut-out of a parabloid. The thickness of the Paraboloid is not given in the 
SHELL_SCS_PARABOLOID since it is a surface model. For the Cylinder in the geometry model, in the thermal model 
multiple instances are created. First an SHELL_SCS_ CYLINDER is created. This cylinder is open at the ends by 
default. Therefore, for every Cylinder two SHELL_SCS_DISCs are generated and transformed to the ends of the 
cylinder.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 3. Geometry Model and thermal model generated from the design language 



With the primitives shown in Fig. 2 it is already possible to create a thermal geometry model as shown in Fig. 3 on the 
right hand side. On the left hand side the according geometry model is shown. The geometry model includes some more  
details as for example the decks in the satellite have stiffening corrugations and the boxes have mounting links. These 
details are not exported to the thermal model since they are not relevant to a thermal simulation. 
 
THERMAL MODELING 
 
 
For modelling the specific parameters of a thermal simulation the UML model from [4] contains further classes. In Fig. 
4 a few more classes for the definition of a SHELL are given. According to the model, a SHELL has a 
BULK_MATERIAL, a MESH and two sides, SIDE1 and SIDE2. The BULK_MATERIAL specifies the assumed thickness 
of the surfaces for the calculation of the heat capacity (thick). It has also a link bulk to an instance specifying the 
material properties for the SHELL. The MESH class specifies the number of thermal nodes on the SHELL in the 
different  axis directions. The SIDE1 and SIDE2 classes give with nbase a base node number from which the nodes 
are counted by an ndelta increment. Furthermore the two sides specify the optical properties of the surfaces and 
indicate if the side is active in the simulation by a Boolean value. 
 
 

 
  Fig. 4. Class diagram of the thermal model in UML 
 
When the geometry and material definition for the thermal model is established, further boundary conditions such as 
contact conductance have to be considered. For the automatic generation of such boundary conditions the different 
semantic layers of the design language can be used. The satellite design language for example consists of different sub-
languages. For the mounting of the satellites´ electronic boxes on the primary structure, the satellite design language 
uses a mounting language. In this mounting language, a MountingPlane has MountingBoxes (see Fig. 5). Since all elec- 
 

 
 

Fig. 5. Excerpt of the mounting language 
 
tronic boxes are mounted by this mechanism on the different decks of the satellite, it is now possible to identify all 
boxes and their mounting plane (i.e. the side of the deck) automatically:  
From the geometry language the local coordinates of the MountedBoxes on the MountingPlanes can be retrieved. From 
these coordinates, the node numbers where the MountingBoxes are located on the SHELLs representing the mounting 
planes. When the node number is retrieved, a conductive conductor can be generated. A conductive conductor 
represents the contact conductance between the box and the deck can be modelled. By this simple mechanism, the box 
can be mounted mechanically as well as thermally to the deck in one step.   
 
FUNCTIONAL MODELING 
 
 
For the definition of system-wide budgets a satellite-system language is given. In this system language the elements for 
a power budget are specified. The basic element of this budget is represented by a PowerElement which specifies the 
attribute power in Watts for every power consumer. Every satellite box which consumes power, inherits the attribute 
power from this class. In Fig. 6 an example of the on-board computer OBC inheriting from PowerElement is given.  
 



 
 

  Fig. 6. Geometry Model as generated from the design language 
 
The code for the generation of the thermal model is now able to identify, that the OBC consumes the given amount of 
power. For the identification of the according SHELL the OBC inherits also from ThermalElement. For all 
ThermalElements, a repSHELL link is set when the thermal geometry representation is generated. Thus the code can 
navigate over the repSHELL link to the SHELL of the OBC and generate a boundary condition for the thermal 
simulation with the power value as radiated heat from the OBC SHELL. 
Another functional aspect in this example is the generation of code for the power simulation. The basis therefore is also 
the repSHELL link from the ThermalElement. In Fig. 6 on the right hand side, the SolarPanel class is shown. This 
class is instantiated for every solar panel of the satellite. In the generation of the thermal simulation now FORTRAN 
code is produced, with all thermal nodes of the solar array listed. An excerpt of this code is shown in listing 1. The  
 
 
# ------------------------------------------------------------------------------ 
# SOLAR_POWER calculation 
#  
# Q_SOLAR is combined with ETA_SOLAR (ca. 27%) the power which can 
# be provided by the solar array. 
# ------------------------------------------------------------------------------ 
      SUBROUTINE SOLAR_POWER LANG = MORTRAN # Calculate Power of SolarArray 
C SOLAR POWER   
        Q_SOLAR = 0.0 
C SOLAR PANEL 1 
        Q_SOLAR = Q_SOLAR + QS3154 
        Q_SOLAR = Q_SOLAR + QS3155 
        Q_SOLAR = Q_SOLAR + QS3156 
        Q_SOLAR = Q_SOLAR + QS3157 
        ... 
        ... 
        ... 
        Q_SOLAR = Q_SOLAR + QS22212 
        Q_SOLAR = Q_SOLAR + QS22213 
        Q_SOLAR = Q_SOLAR + QS22214 
        Q_SOLAR = Q_SOLAR + QS22215 
C Power by solar cells         
        POWER_SOLAR = Q_SOLAR * ETA_SOLAR     
      RETURN 
      END 
C            
 

Listing 1: Example of Code generated for the simulation of the produced power. 
 
 

numbers QS3154, QS3155 etc. represent the node numbers of the solar array. The value ETA_SOLAR is the 
efficiency of the solar cells. The incident solar radiation is multiplied by ETA_SOLAR to get the power produced by the 
array. In the exemplary thermal simulation an detailed analysis of the whole power budget of the satellite is 
accomplished. The power consumption of the electronic boxes was transferred manually in this example but there is no 
limitation to easily generate these routines too. By these means, the thermal simulation can be refined with different 
modes of the satellite to simulate the different operational states in orbit. 
 
The generated algorithm for the power and heat budget model is represented in an activity diagram in Fig. 7. In each 
time step the available solar power is determined from the solar radiation fluxes given by ESATAN, and it is 
determined which hardware components should be turned on or off, according to lookup tables which have to be 
specified for the investigated mission. Once the required power for the current time step is known, the algorithm 
decides whether the produced power from the solar array suffices to supply the power consumers. If there is not enough 
power produced, a delta power has to be drawn from the on-board battery. If more power than required is produced, the 
battery can be charged with the excess solar power. For most power consumers it can be assumed that the requested 
power is directly converted into heat. One exception is the travelling wave tube amplifier, where most of the energy is 
radiated in the generated radio signal. The heat fluxes for the Power Converter and Distribution Unit (PCDU), or the 



Solar Power Converter Unit depend on the power requested by the consumers and the electrical efficiencies of the units. 
This power simulation can be modified and improved by the system engineer at will, as long as those modifications can 
be converted into the MORTRAN syntax. Possible modifications range from the addition of heaters over the simulation 
of heat pipes to the implementation of detailed battery heating models. 
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Fig. 7. Activity diagram of the algorithm for the coupled thermal and power simulation 
 

 
RESULTS AND DISCUSSION 
 
Not claiming to be advanced ESATAN experts, the authors were able create and adapt models within hours, which 
would have taken at least several days, had they been created manually. Since this work is to be considered as proof of 
concept, the authors did not have the intention of creating a perfectly working thermal system. For example, the power 
converter unit turned out to create huge amounts of heat, which has not been expected when the hardware was 
positioned in the structural frame. This is a simple example of how a high-fidelity model in an early design stage creates 
sophisticated knowledge of the preliminary design. In a future design language of a thermal system, the system engineer 
could add one rule, that this power converter unit must be placed close to a radiator. This way, the design language 
would get better and better the more often it is used, allowing the system engineer to create deeper knowledge of early 
design variants. 
Of course, this speed-up of the design process comes at a certain price: modern information representation and 
processing techniques find their way now directly in the core processes of engineering, i.e. modelling and processing is 
no longer done on the MORTRAN/FORTRAN level. Instead, modelling is done one (or even several) levels of 
abstraction higher by modelling the (sub-)system properties in a graph-based design language in UML format and the 



appropriate MORTRAN/FORTRAN model is compiled from that. While this seems to be a far too high price for the 
speed-up in one engineering discipline, the reader should be assured that this applies in any discipline, thus being an 
universal, multi-disciplinary modelling platform guaranteeing system-wide parameter and model consistency through 
an automated compilation process. While model compilation is just the first direct consequence of this technology, the 
full impact of graph-based design languages will show off when further knowledge processing techniques such as 
model-to-model transformations combined with background (design knowledge) ontologies will be operational as it is 
currently investigated in the working group of the authors at Stuttgart University.      
 
 

Power Converter UnitTemperature in °C  
.  

Fig. 8. Result from the generated Radiative Model 
 
 
CONCLUSIONS 
 
In this work, a proof of concept for the utilization of design languages in thermal systems engineering is given. It is 
shown that by simple inheritance mechanisms provided by UML a semantically rich engineering model can be created. 
From the different aspects of this model, relevant information for a thermal simulation model can be automatically 
retrieved. The possibility to eliminate the tedious task of creating simulation models is demonstrated.  
This approach comprehends a high potential of early problem identification by means of multidisciplinary design 
analysis. This can even be extended when such a design language is coupled not only to a thermal and power budgeting,  
but also to FEM analysis, AOCS simulation and an automated solution of the integration problems such as packing and 
wiring (routing).  
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