Die Bedeutung der strukturellen Masseneffizienz im **Kugelballon**

A. Kunze, B. Kröplin

Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Universität Stuttgart, Pfaffenwaldring 27 D-70569 Stuttgart Tel.:+49 711 685 69521, Fax: +49 711 685 63706

Übersicht. Für den schwebenden Kugelballon wird die analytische Lösung der Spannungsverteilung in Abhängigkeit des Strukturmassenanteils hergeleitet. Daraus folgend wird der Einfluss des Strukturmassenanteils auf die Belastung, Formgebung und Baugröße untersucht. Anschließend werden die Ergebnisse des Kugelballons mit Smalleys natürlicher Tropfenform verglichen. Des Weiteren wird für den Kugelballon die Relevanz der Lastfälle "Steigen" und "Fallen" für die Dimensionierung erläutert.

Verwendete Formelzeichen

k (1 - k)	aufgehängter Massenanteil Hüllenmassenanteil	p ₀ p _L Dc	absoluter Druc absoluter Luftd absoluter Gaso
m₄	aufgehängte Masse	Δp	aerostatischer
f	Flächengewicht der Ballonhülle		
f _D	Flächengewicht der dichtenden Schicht	F_z	Summe Kräfte
f _#	Flächengewicht der belasteten Schicht	F _H	Gewichtskraft
		F _A	Gewichtskraft
R	Kugelradius	F∆p	Differenzdruck
r	Radius des Breitenkreises	$F_{\Delta p,z}$	Differenzdruck
V	Volumen		
0	Oberfläche	Nü	Spannung aus
S	Meridiankoordinate	N1	Meridionalspar
h	Höhe über dem unteren Pol	N2	Querspannung
φ	Polarwinkel $0 \le \phi \le \pi$	N1o	Meridionalspar
φ _A	Polarwinkel der Aufhängung	N1u	Meridionalspar
θ	Azimutwinkel $0 \le \theta < 2\pi$	N2o	Querspannung
		N2u	Querspannung
g	Erdbeschleunigung		
M_L	molare Masse von Luft	j	Sicherheit geg
M_{G}	molare Masse des Traggases	σ_{Bruch}	Flächenbezoge
ρ_L	Luftdichte	$\rho_{Mat.}$	Materialdichte
ρ_{G}	Gasdichte	N _{Bruch}	Längenbezoge
ρ	Dichte am unteren Pol		
p _ü	globaler Überdruck		
p _{ges}	gesamter Differenzdruck		

k am unteren Pol

- druck
- druck
- Differenzdruck
- in z-Richtung
- der Hülle
- der aufgehängten Masse
- kraft
- kraft in z Richtung
- globalem Überdruck
- nnung
- nnung oberhalb φ_A
- nnung unterhalb φ_A
- g oberhalb @A
- g unterhalb oA
- en Bruch
 - ene Bruchspannung
- ene Bruchspannung

1. Einleitung

Freiballone mit offenem Füllansatz sind die ersten Luftfahrtgeräte leichter als Luft. Für die später folgenden Lenk- und Motorballone sind sie direkte Vorläufer. Sie teilen mit ihnen gemeinsame Grundlagen, Technologien und Strukturbaugruppen. Die Bauweisenentwicklung bei Freiballonen selber ist derzeit nicht abgeschlossen, jedoch sind die Ähnlichkeiten mit den ersten Ballonen von von 1783 so erheblich, dass eine vertiefte Untersuchung des Charles und Montgolfier

Grundkonzeptes der Kugelgestalt das Verständnis der daraus entwachsenen heutigen Bauformen vertiefen kann.

2. Übergeordnete strukturelle Form

Trotz aller Vielfalt ist eine übergeordnete charakteristische strukturelle Form im Ballonbau auffindbar, die bestimmt ist von der Art der Auftriebserzeugung. Die Resultierenden der aerostatischen Auftriebskraft und der Gewichtskraft richten sich bei Windstille im Gravitationsfeld vertikal übereinander aus. Bei bemannten Ballonen liegt das Verhältnis von zum Schweben erforderlichem Verdrängungsvolumen zu dem von der Nutzlast verdrängten Volumen bei mehr als 1 10³. Daraus resultiert ein rotationssymmetrischer vertikaler Aufbau mit oberem ausgedehnten Verdrängungskörper und darunter liegender konzentrierter Nutzlast, sowie einer kegelförmigen Verbindung. Durch die Umlenkung der vertikalen Kräfte in der Verbindung erzeugt die Aufhängung Kontraktionskräfte am Verdrängungskörper. Da die Struktur aus biege- und druckschlaffen Membranen besteht, können die Kontraktionskräfte bei vollständigem Abbau der Vorspannung zur Einschnürung des Auftriebskörpers und zur Ausbildung einer modifizierten Gleichgewichtsform führen.

Bei horizontalen Relativgeschwindigkeiten des Ballons in Bezug auf die kontaktierende Umgebung kommt es zur Verletzung der rotationssymmetrischen Bedingung. Insbesondere für die Bodenoperation bei Wind stellt sich beim Ballon ein "Vorne" und "Hinten" ein, das in der Ausrichtung von Start- und Landeeinrichtungen sowie im Korbgrundriss berücksichtigt wird. Im Gegensatz dazu weisen die gebauten Hüllen selber in der Regel eine diskrete Rotationssymmetrie auf. Das Grundkonzept der Kugel hingegen ist zylindersymmetrisch und damit idealistisch, was die Betrachtung erheblich vereinfacht.

3. Die Kugelform

Die Kugelform trägt Anzeichen einer gewichtsoptimierten Ballonkonstruktion. Sie hat die kleinste Oberfläche pro Volumen aller Körper und bewirkt unter der Vernachlässigung von Masseneinflüssen (Hüllengewicht, aerostatischer Auftrieb, Nutzlast) unter einem homogenen Überdruck $p_{\tilde{u}}$ eine einförmige Membranspannung und Materialnutzung. Sie ist deshalb seit 1783 bis in die 1930er Jahre bevorzugte Grundlage für die Formgebung und bis heute Referenz für alternative Entwürfe. Von besonderem Wert ist wie folgend gezeigt wird, dass ihre Betrachtung eine Fülle von analytischen Lösungen ermöglicht.

Kritikpunkte der Kugel sind, dass die Vorteile der Kugelform durch die Masseneinflüsse geschmälert werden, so dass es zu einer ungleichen Spannungsverteilung und möglicherweise zu Verformung unter Verlust von Volumen und Effizienz kommt und, dass die Form über keinen konzentrierten Lasteinleitungspunkt verfügt, so dass es dafür einer zusätzlichen Struktur bedarf.

4. Belastungen durch Masseneinflüsse

Die Belastung des Kugelballons im Schwebezustand erfolgt durch eine am Aufhängeparallel angehängte Masse, durch aus dem aerostatischen Auftrieb resultierende Differenzdrücke, sowie durch das Hüllengewicht, für das eine gleichmäßige Verteilung über die Oberfläche angesetzt wird.

Für die Betrachtung wird nach Gleichung (1) die aufgehängte Masse m_A auf die Gesamttragfähigkeit bezogen. Es erfolgt daraus der aufgehängte Massenanteil k. Er bewegt sich zwischen $0 \le k \le 1$ und ist ein Maß für die Masseneffizienz des Ballons. Ist die Ballonhülle masselos ist k = 1. Für k = 0 muss der ganze Auftrieb zum Tragen der Hülle aufgewendet werden und die angehängte Masse m_A ist dann = 0. Bei bemannten Ballonen ist $0,7 \le k \le 0,9$.

$$k = \frac{m_A}{V \cdot (\rho_L - \rho_G)}$$
(1)

Mit der in Abbildung 1 festgelegten Beschreibung der Kugeloberfläche erfolgt nach den Gleichungen (2) bis (5) die Berechnung der Kugeloberfläche O zwischen dem unteren Pol und dem Polarwinkel φ .

(2)

(3)

$$r = R \cdot \sin \phi$$

 $ds=R\cdot d\phi$

Abbildung 1.

$$O = \int_{\varphi_1}^{\varphi_2} 2 \cdot \pi \cdot \mathbf{r} \cdot d\mathbf{s} = \int_{\varphi_1}^{\varphi_2} 2 \cdot \pi \cdot \mathbf{R}^2 \cdot \sin \varphi \cdot d\varphi = 2 \cdot \pi \cdot \mathbf{R}^2 \left[-\cos \varphi \right]_{\varphi_1}^{\varphi_2}$$
(4)

$$O = 2 \cdot \pi \cdot R^2 \cdot (1 - \cos \varphi) \tag{5}$$

Das Ballonhüllengewicht ergibt sich aus der Ballonoberfläche und dem Flächengewicht f und ist gleich dem Hüllenmassenanteil (1 - k) multipliziert mit der Gesamttragfähigkeit. Nach Umformung erfolgt für das Flächengewicht Gleichung (8).

$$V \cdot (\rho_L - \rho_G) \cdot (1 - k) = O \cdot f \tag{6}$$

$$\frac{4}{3} \cdot \pi \cdot \mathsf{R}^{3} \cdot \rho_{\mathsf{L}} \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) = 4 \cdot \pi \cdot \mathsf{R}^{2} \cdot \mathsf{f}$$
⁽⁷⁾

$$f = \frac{R}{3} \cdot (1 - k) \cdot \rho_{L} \cdot (1 - \frac{M_{G}}{M_{L}})$$
(8)

Weiter folgt nach Gleichung (9) die Gewichtskraft der Hülle F_H vom unteren Pol bis zum Polarwinkel ϕ .

$$F_{H} = O \cdot f \cdot g = \frac{2}{3} \cdot \pi \cdot R^{3} \cdot g \cdot \rho_{L} \cdot (1 - \frac{M_{G}}{M_{L}}) \cdot (1 - k) \cdot (1 - \cos \phi)$$
(9)

Für die Belastung F_A infolge der aufgehängten Masse m_A erfolgt eine Fallunterscheidung für Bereiche unter und über dem Aufhängeparallel an der Stelle φ_A .

$$f \ddot{u} r \phi < \phi_A \Longrightarrow F_A = 0 \tag{10}$$

$$f \ddot{u} r \phi \ge \phi_A \Longrightarrow F_A = m_A \cdot g \tag{11}$$

mit

$$\mathbf{m}_{A} = \mathbf{k} \cdot \mathbf{V} \cdot (\rho_{L} - \rho_{G}) = \mathbf{k} \cdot \frac{4}{3} \cdot \pi \cdot \mathbf{R}^{3} \cdot \rho_{L} \cdot (1 - \frac{\mathbf{M}_{G}}{\mathbf{M}_{L}})$$
(12)

Der statische Differenzdruck nimmt mit der Höhe h über dem untern Pol zu. Der absolute Druck in der Gassäule entspricht Gleichung (13). Der absolute Druck in der Luftsäule entspricht Gleichung (14).

$$\mathbf{p}_{\rm G} = \mathbf{p}_0 - \mathbf{p}_{\rm G0} \cdot \mathbf{g} \cdot \mathbf{h} \tag{13}$$

$$\mathbf{p}_{\mathsf{L}} = \mathbf{p}_0 - \boldsymbol{\rho}_{\mathsf{L}0} \cdot \mathbf{g} \cdot \mathbf{h} \tag{14}$$

mit

$$h = R - R \cdot \cos \varphi = R \cdot (1 - \cos \varphi) \tag{15}$$

folgt der statische Differenzdruck Δp

$$\Delta \mathbf{p} = \mathbf{p}_{G} - \mathbf{p}_{L} = (\rho_{L0} - \rho_{G0}) \cdot \mathbf{g} \cdot \mathbf{h} = \rho_{L0} \cdot (1 - \frac{M_{G}}{M_{L}}) \cdot \mathbf{g} \cdot \mathbf{R} \cdot (1 - \cos \varphi)$$
(16)

Die Differenzdrücke müssen über die Kugeloberfläche integriert werden. Dazu wird die Beschreibung der Kugeloberfläche in Parameterform verwendet. Sie lautet:

$$\vec{R} = \begin{cases} R \cdot \sin \phi \cdot \cos \theta \\ R \cdot \sin \phi \cdot \sin \theta \\ R \cdot \cos \phi \end{cases}$$
(17)

Mit den Ableitungen

$$\vec{R}_{\phi} = \begin{cases} \mathbf{R} \cdot \cos \phi \cdot \cos \theta \\ \mathbf{R} \cdot \cos \phi \cdot \sin \theta \\ -\mathbf{R} \cdot \sin \phi \end{cases}, \ \vec{R}_{\theta} = \begin{cases} -\mathbf{R} \cdot \sin \phi \cdot \sin \theta \\ \mathbf{R} \cdot \sin \phi \cdot \cos \theta \\ 0 \end{cases}$$
(18)

folgt das Flächendifferential

$$d\vec{O} = \vec{R}_{\phi} \times \vec{R}_{\theta} = R^{2} \cdot \begin{cases} \sin^{2} \phi \cdot \cos \theta \\ \sin^{2} \phi \cdot \sin \theta \\ \cos \phi \cdot \sin \phi \end{cases}$$
(19)

Aus der Integration der Differenzdrücke über die Oberfläche folgt die Differenzdruckkraft F_{Δp},

$$\vec{\mathsf{F}}_{\Delta \mathsf{p}} = \iint_{\Theta} \Delta \mathsf{p} \cdot \mathsf{d} \vec{\mathsf{O}}$$
(20)

$$\vec{\mathsf{F}}_{\Delta p} = \rho_{\mathsf{L}} \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) \cdot g \cdot \mathsf{R}^{3} \cdot \begin{cases} \int_{0}^{2\pi} d\theta \int_{0}^{\phi} (1 - \cos \phi) \cdot \sin^{2} \phi \cdot \cos \theta \cdot d\phi \\ \int_{2\pi}^{2\pi} \theta \int_{0}^{\phi} (1 - \cos \phi) \cdot \sin^{2} \phi \cdot \sin \theta \cdot d\phi \\ \int_{2\pi}^{0} d\theta \int_{0}^{\phi} (1 - \cos \phi) \cdot \cos \phi \cdot \sin \phi \cdot d\phi \end{cases}$$
(21)

$$\vec{\mathsf{F}}_{\Delta \mathsf{p}} = \rho_{\mathsf{L}} \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) \cdot \mathsf{g} \cdot \mathsf{R}^{3} \cdot \begin{cases} 0 \\ 0 \\ 2 \cdot \pi \cdot \left[\frac{\sin^{2} \varphi}{2} + \frac{\cos^{3} \varphi}{3}\right]_{0}^{\varphi} \end{cases}$$
(22)

mit einer Resultierenden in z Richtung.

$$\mathsf{F}_{\Delta \mathsf{p}, \mathsf{z}} = \rho_{\mathsf{L}} \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) \cdot \mathsf{g} \cdot \mathsf{R}^{3} \cdot 2 \cdot \pi \cdot (\frac{\sin^{2} \varphi}{2} + \frac{\cos^{3} \varphi - 1}{3}) \tag{23}$$

Die Spannungen in der Ballonhaut ergeben sich durch eine Schnittbetrachtung. Da der Ballon rotationssymmetrisch ist und die Hauptkraftrichtung vertikal verläuft kann angenommen werden, dass eine Hauptspannungsrichtung meridional verläuft. Die Meridionalspannung N1 kann durch Horizontalschnitte nach Gleichung (24) ermittelt werden.

$$N1 = \frac{\sum F_z}{\sin \varphi} \cdot \frac{1}{2 \cdot \pi \cdot r} = \frac{\sum F_z}{2 \cdot \pi \cdot R \cdot \sin^2 \varphi}$$
(24)

Die Singularität für N1 in den Polen, wo r = 0 wird liegt allein in der Betrachtungsweise. Die Polspannungen sind endlich und können durch polnahe Winkel (ϕ = 179,9999°) angenähert werden.

Die Meridionalspannung unter dem Aufhängeparallel N1u ist

$$N1u = \rho_{L} \cdot \left(1 - \frac{M_{G}}{M_{L}}\right) \cdot g \cdot R^{2} \cdot \left[\frac{(1 - k) \cdot (1 - \cos \varphi)}{3 \cdot \sin^{2} \varphi} + \frac{1}{2} + \frac{\cos^{3} \varphi - 1}{3 \cdot \sin^{2} \varphi}\right]$$
(25)

Die Meridionalspannung oberhalb des Aufhängeparallels N1o ist

$$N10 = \rho_{L} \cdot \left(1 - \frac{M_{G}}{M_{L}}\right) \cdot g \cdot R^{2} \cdot \left[\frac{2 \cdot k}{3 \cdot \sin^{2} \phi} + \frac{(1 - k) \cdot (1 - \cos \phi)}{3 \cdot \sin^{2} \phi} + \frac{1}{2} + \frac{\cos^{3} \phi - 1}{3 \cdot \sin^{2} \phi}\right]$$
(26)

Die maximale Meridionalspannung liegt am oberen Pol. Für ϕ = 179,9999° kann der Klammerausdruck am oberen Pol ausgewertet werden. Nach Abbildung 2 nimmt er für k = 1 ein Maximum von 1 an und fällt mit abnehmendem k bis auf einen minimalen Wert von ca. 0,835 ab. Ein größerer Hüllenmassenanteil entlastet demnach das Top. Für 0,7 \leq k \leq 0,9 ergibt sich 0,95 \leq [] \leq 0,985.

Abbildung 2. Klammerausdruck aus Gleichung (26) über k für φ = 179,9999°

Mit der bekannten Spannung in Meridianrichtung kann am Flächenelement die Gleichgewichtsbedingung in Normalenrichtung aufgestellt werden und die Spannung N2 quer zur Meridianrichtung errechnet werden.

Abbildung 3. Kräfte am Flächenelement

In Abbildung 3. sind die Kräfte am Flächenelement in Meridianrichtung abgebildet. Analog verlaufen die Kräfte in die Querrichtung aus der Bildebene heraus. Es ist

$$p_{ges} \cdot R \cdot 2 \cdot d\phi \cdot R \cdot 2 \cdot d\theta = 2 \cdot (N1 \cdot sin(d\phi) \cdot R \cdot 2 \cdot d\theta) + 2 \cdot (N2 \cdot sin(d\theta) \cdot R \cdot 2 \cdot d\phi)$$
(27)

$$R \cdot p_{ges} = \frac{N1 \cdot sin(d\phi)}{d\phi} + \frac{N2 \cdot sin(d\theta)}{d\theta}$$
(28)

für kleine Winkel gilt $sin(d\phi) = d\phi$ und damit

$$R \cdot p_{ges} = N1 + N2 \tag{29}$$

mit

 $\mathbf{p}_{ges} = \mathbf{p}_{\dot{u}} + \Delta \mathbf{p} + \mathbf{f} \cdot \mathbf{g} \cdot \cos \boldsymbol{\varphi}$ (30)

folgt

$$N2 = R \cdot (p_{\ddot{u}} + \Delta p + f \cdot g \cdot \cos \phi) - N1$$
(31)

In der folgenden Abbildung 4 sind die beiden auf die obere Polspannung normierten Hauptspannungen N1 und N2 über dem Polarwinkel dargestellt.

Abbildung 4 Membranspannungen auf obere Polspannung bezogen über dem Polarwinkel dargestellt für k = 0,8 und p_{u} = 0. Die Abbildung hängt maßgeblich von k ab.

In den Polen ist N1 = N2. Im Polarwinkel der Aufhängung ϕ_A erfolgt ein senkrechter Sprung von der N1u Kurve auf die N1o Kurve und von der N2u Kurve auf die N2o Kurve. Soll die Kugelform erhalten bleiben, darf N2 keine negativen Werte annehmen. Daraus folgt ein eingeschränkter Aufhängebereich $\phi_{Amin} \leq \phi_A < 90^\circ$.

Der minimale Aufhängwinkel φ_{Amin} für die Bedingung N2 = 0 kann in Abhängigkeit von k dargestellt werden.

Abbildung 5. minimale Aufhängwinkel ϕ_{Amin} über k

Es zeigt sich, dass mit leichter werdenden Ballonen der minimale Aufhängewinkel von 0° auf maximal 81° steigt. R, ρ_L , M_G haben bei gleich bleibendem k einen zu vernachlässigenden Einfluss auf die Kurve. Wird die Aufhängung zur Ballonform dazugezählt, dann wird der aufgehängte Massenanteil k zum Formparameter.

5. Belastung durch einen globalen Überdruck

Zusätzliche Spannungen N_{u} aus einem globalen Überdruck p_{u} , hervorgerufen durch einen Füllansatz oder ein Gebläse, können zu den bisherigen Meridionalspannungen addiert werden.

$$N_{\ddot{u}} = \frac{p_{\ddot{u}} \cdot R}{2}$$
(32)

6. Belastungen aus der vertikalen Umströmung

Beim Steigen und Fallen des Ballons wird im Folgenden die zusätzliche Be- und Entlastung der Membran durch Unter- und Überdrücke sowie durch Reibung infolge der Umströmung als rotationssymmetrisch angesehen.

Aus der Potentialtheorie folgt eine analytische Lösung für die cp –Verteilung [1]. Sie erzeugt jedoch keinen Luftwiderstand, weicht durch die Reibungsfreiheit im Nachkörper erheblich von Messwerten ab und ist deshalb für eine Kräftebilanzierung in z –Richtung von geringem Wert. Zur Berücksichtigung aerodynamischer Kräfte wurde auf Messdaten von Achenbach [2], [3] zurückgegriffen. Der auf den Durchmesser bezogene Widerstandsbeiwert wurde mit 0,1 angesetzt. Die cp -Verteilung erfolgte [3] für eine Durchmesserbezogene Reynoldszahl von 1,14·10⁶. Der Reibungswiderstand wurde nach einer Verteilung in [2] auf die Kugeloberfläche verteilt.

Der Gesamtwiderstand kompensiert in der folgenden Betrachtung den abgeworfenen Ballast oder den verlorenen Auftrieb durch welche die Vertikalgeschwindigkeit ausgelöst wird. Weiter wird angenommen dass der Ballon prall steigt und fällt. Unberücksichtigt sind zusätzliche globale Unter- oder Überdrücke hervorgerufen durch Stauungen und Druckverluste bei der Durchströmung des Öffnungsquerschnitts, sowie adiabatische Temperatureinflüsse auf den Auftrieb. Eine allgemeine analytische Lösung kann demnach hier nicht angegeben werden, jedoch können aus exemplarischen Berechnungen allgemeine Aussagen abgeleitet werden.

Die größten Umströmungskräfte sind bei maximaler Luftdichte (hier 1,225 kg/m³) und bei maximaler vertikaler Geschwindigkeit zu erzielen. Mehrere Beispiele wurden für H2 gefüllte Ballone mit einem k = 0,8 und einem minimalen Aufhängewinkel von 76° berechnet.

Ab einer kritischen Vertikalgeschwindigkeit übersteigt N2 in Bereichen über und unterhalb der Aufhängung die Polspannung im Schwebezustand. Die kritische Vertikalgeschwindigkeit ist abhängig von der Ballongröße. Bei einer Größe von 310 m³ sind es 6 m/s, bei 1000m³ sind es 7 m/s, bei 2310m³ sind es 8 m/s.

Die folgenden Abbildungen zeigen die Spannungen in einem H2 Ballon mit 1000 m³ für ein k = 0,8 und einem φ_A = 76° in Meereshöhe bei einer Vertikalgeschwindigkeit von 8 m/s.

Beim Steigen prägt sich der abgeworfene Ballast in Form von Luftwiderstand der Gesamthülle auf. Der obere Pol wird durch den Staudruck entlastet.

Beim Fallen prägt sich der fehlende Auftrieb in Form von Luftwiderstand der Gesamthülle auf. Der obere Pol wird weniger entlastet und der untere Pol befindet sich im negativen Spannungsbereich, was darauf hinweist, dass er eingestülpt würde.

In den Sogbereichen wird die N2 Richtung stärker belastet als die N1 Richtung. Beim Steigen ist die N2 Spannung im Bereich von φ = 110° bereits 12% über der Polspannung im Schwebezustand.

Beim Fallen steigt die N2 Spannung im Bereich bis zum Aufhängepunkt bei ϕ = 75° bis auf 115% der Polspannung im Schwebezustand.

Abbildung 6. Meridionalspannung in einem prallen 1000 m³ Ballon schwebend, steigend mit 8 m/s und fallend mit 8 m/s.

Abbildung 7. Querspannung N2 in einem prallen 1000 m³ Ballon schwebend, steigend mit 8 m/s und fallend mit 8 m/s

In der folgenden Tabelle sind Maximalwerte für N2 bezogen auf die Topspannung für 3 Ballongrößen zusammengestellt. Kritische Zustände für den oberen Pol können in dem untersuchten Geschwindigkeitsbereich für den 310 m³ Ballon ermittelt werden. Bei einer reinen H2 Füllung wird das Top ab 12 m/s steigen eingedrückt. Bei einem H2 Luftgemisch nach einem Abstieg aus 5000 m wird das Top bei einem Wiederaufstieg ab 9 m/s eingedrückt.

V _{vertikal}	310 m ³		1000 m ³		2309 m ³	
	steigen	fallen	steigen	fallen	steigen	fallen
5m/s	90%	92%	80%	89%		
8m/s	143%	139%	115%	112%	101%	99,4%
10 m/s	190%	187%	147%	142%	125%	121%
12 m/s	256%	256%	191%	188%	159%	154%
V _{kritisch}	/ _{kritisch} 6m/s		7m/s		8 m/s	

Tabelle 1.

Für eine Vertikalgeschwindigkeit < 5 m/s ist die obere Polspannung dimensionierend. Dies wird für die folgenden Ausführungen zugrunde gelegt.

7. Die Spannungsverhältnisse N1/N2

Bei einer Kugel unter homogenem Überdruck ist das Spannungsverhältnis N1/N2 global = 1. Durch die Berücksichtigung von Masseneinflüssen kommt es zu Abweichungen. In Abbildung 8 sind die Spannungsverhältnisse über φ für verschiedene k dargestellt. Die angehängt Masse ist jeweils in $\varphi_{A,min.}$ aufgehängt. Von den Polen ausgehend werden Spannungsverhältnisse nahe 1 erreicht. In der Aufhängung erfolgt durch die Bedingung N2 = 0 eine einachsige Spannung.

Abbildung 8. N1/N2 für verschiedene k Werte. Aufhängung jeweils bei $\phi_{A,min.}$

Wird der Aufhängewinkel bei gleichem k erhöht kommt es zu einer Parallelverschiebung der Sprungstelle im N1/N2 Verlauf, so dass grundsätzlich geringere Spannungsverhältnisse erzielt werden können. Durch Erhöhung des Aufhängeparallels um ca. 11° kann das Spannungsverhältnis an der Aufhängung auf 4:1 reduziert werden.

Abbildung 9. φ_A Erhöhung um ca. 11° so dass N1/N2 max. =4

Die Spannungsverhältnisse verändern sich mit der Ballonumströmung. In Abbildung 10 ist N1/N2 für mehrere Aufstiegsgeschwindigkeiten dargestellt. In Abbildung 11 ist N1/N2 für mehrere Fallgeschwindigkeiten dargestellt. Die Ergebnisse im unteren Kugelbereich bis ca. 60° beim Fallen enthalten mindestens eine negative Komponente und sind, da die Kugelform eingedrückt würde unrelevant.

Aus den Verläufen folgt, dass eine exakte Anpassung der Struktur an die Vorspannverhältnisse über einen größeren Bereich der Vertikalgeschwindigkeiten kaum möglich ist.

Abbildung 10. N1/N2 für unterschiedliche Steiggeschwindigkeiten, k = 0,8 und V = 1000m³

Abbildung 11. N1/N2 für unterschiedliche Fallgeschwindigkeiten, k = 0,8 und V = 1000m³

8. Die natürliche Form

Wird die Randbedingung N2 \ge 0 unterschritten kommt es zur natürlichen eigenständigen Formbildung, wobei der Umfang faltend kontrahiert bis N2 = 0 erreicht wird. Die Membran ist dann einachsig meridional gespannt und der Ballon ist unprall. Dieser Zustand kann durch Teilbefüllung, ein tiefes Aufhängeparallel oder durch Zwängung beim mechanischen Einschnüren wie in Abbildung 12 dargestellt erfolgen.

Abbildung 12. Kugelballon mit abgebundenem und niedergehaltenem Top bei der Befüllung.

Am eingeschnürten Pol wird die Umfangsspannung auf die Einschnürung übertragen wodurch die Bedingung N2 = 0 verletzt wird. Für den Bereich zwischen den Polen lässt sich jedoch für eine unten aufgehängte Nutzlast eine Ballonform finden in der N2 = 0 ist. Dieser Zustand bleibt auch beim unprallen Schweben erhalten und in Prallhöhe solange die Entwurfsnutzlast nicht unterschritten wird. Numerische Lösungen zur natürlichen Tropfenform sind unter anderem von Smalley [4] veröffentlicht worden. Sie lassen sich kennzeichnen durch die dimensionslose Kennzahl Σ (Sigma), die gleichzeitig ein Formparameter und ein Maß für die Effizienz darstellt.

$$\Sigma = \frac{f \cdot (2\pi)^{1/3}}{m_A^{1/3} \cdot \left[\rho_L \cdot (1 - \frac{M_G}{M_L})\right]^{2/3}}$$

(33)

Die höchste Effizienz wird im masselosen Ballon mit f = 0 und daraus folgend Σ = 0 erzielt. Den wesentlichsten Einfluss auf Σ hat der Parameter Flächengewicht f gefolgt vom spezifischen Auftrieb und der angehängten Masse. Des Weiteren nimmt zusätzlich das Verhältnis von Volumen pro Oberfläche mit veränderlichem Σ Einfluss auf die Effizienz. In Abbildung 13 sind Meridianquerschnitte unterschiedlicher Sigmaformen [4] und der Kugel für dasselbe Volumen übereinander dargestellt. Ihr V/O bezogen auf das V/O einer Kugel gleichen Volumens über Σ aufgetragen zeigt ein flaches Maximum von 98,4 % bei Σ = 0,1 mit anschließender kontinuierlicher Effizienzabnahme.

Abbildung 13. Formeffizienz unterschiedlicher Σ - Formen

Die Kennzahl Σ kann auch auf Kugeln angewendet werden. Dabei kann nach Bild 14 der Zusammenhang zwischen Σ und k aufgezeigt werden. Der Hüllenmassenanteil (1 - k) entspricht dem Σ - Wert lediglich an den Stellen 0 und 0,943. Für den Bereich 0 < Σ < 1 können die Werte mit einem Bestimmtheitsmaß von 1 korreliert werden.

$$(1-k) = 0,9327 \cdot \Sigma^3 - 2,6326 \cdot \Sigma^2 + 2,6536 \cdot \Sigma$$
(34)

Die kritischen Bereiche der Σ -Form sind die Polbereiche. Hier liegt einerseits mit den Forderungen N2 = 0, N1 = N2 und N2 \neq 0 ein Widerspruch in den geforderten Randbedingungen und wo dieser von der Betrachtung ausgeklammert wird wächst die Meridionalspannung zu den Polen hin über alle Grenzen. Die Meridionalkraft N1·2 π r ist jedoch endlich mit einem Maximum im oberen Pol. Wie Abbildung 12 zeigt kann die Bedingung N2 im Polbereich durch das Reffen eines größer gefertigten Querschnitts mit spannungsakzeptablem r erfüllt werden, wenn der Pol geschlossen sein soll. Im Vergleich zur Sigmaform läuft in der unprallen kontrahierten Kugel der meridionalen Bereich nicht bis zum oberen Pol, so dass in der oberen prallen Kalotte am Pol N1 = N2 erfüllt ist. Ein Vergleich der Abhängigkeit des minimalen Aufhängewinkels von Σ zeigt in Abbildung 15 sowohl bei der Kugel als auch in der natürlichen Tropfenform einen ähnlichen Verlauf.

Abbildung 14. Zusammenhang zwischen (1 - k) und Σ

9. Skala

Im Folgenden wird der Zusammenhang zwischen dem aufgehängten Massenanteil k und der Baugröße hergeleitet. Dabei erfolgt die Dimensionierung des Flächengewichtes über zwei unterschiedliche Ansätze.

9.1. Skalierung bei konstanter Materialeffizienz

Die konstante Materialeffizienz wird definiert als konstante spezifische Zugfestigkeit und als konstante Sicherheit j gegen Bruch.

$$\frac{\sigma_{\text{Bruch}}}{\rho_{\text{Mat}} \cdot j} = \frac{N_{\text{Bruch}}}{f \cdot j} = \text{konst.}$$
(35)

Aus

$$\frac{N_{Bruch}}{j} = N1$$
(36)

folgt der Ballonradius

$$R = \frac{N_{\text{Bruch}}}{f \cdot j} \cdot \frac{1}{g} \cdot \left[\frac{\sin^2 \phi \cdot (1 - k)}{k + (k - 1) \cdot \cos \phi + \frac{3}{2} \cdot \sin^2 \phi + \cos^3 \phi} \right]$$
(37)

Abbildung 16. Klammerausdruck Gleichung (37) für den oberen Pol über k dargestellt.

Der Klammerausdruck von Gleichung (37) für den oberen Pol in Abhängigkeit von k dargestellt zeigt, dass mit steigendem k der Ballonradius abnimmt. Werden als Materialkennwerte Festigkeiten gegenwärtiger Gasballonstoffe (N_{Bruch} = 14000 N/m) und deren eingebaute Gewichte (f = 300 g/m²)

und eine Sicherheit von j = 5 für die Materialeffizienz angesetzt, skaliert das Volumen und das Flächengewicht über k wie in Abbildung 17 dargestellt.

Abbildung 17. V und f über k für ein Referenzmaterial mit f = 0,3 kg/m² und N_{Bruch} = 14000 N/m

Abbildung 18. V und f über k für ein Referenzmaterial mit f = 0,3 kg/m² und N_{Bruch} = 14000 N/m

Beim maximalen Volumen von $2,3.10^8$ m³ ist das Flächengewicht f = 144 kg/m² und k = 0. Die uneffizienten Ballone sind mit Radien bis 380 m weit jenseits des heutigen Baubereichs. Im effizientesten Ballon mit k = 1 geht das Volumen und das Flächengewicht gegen 0. Für den Größenbereich bis 10'000 m³ zeigt sich nach Abbildung 18, dass sich die typischen Baubereiche von Membrangewicht (>200 g/m²) und Volumen (ab 300 m³) nicht überlappen und somit Skalierungsgesetzte gebauter für Volumenbereich nicht Ballone diesen der Dimensionierungsgleichung folgen können, sondern sich eher an minimal verfügbaren Querschnitten Die Dimensionierungsrechnung ergibt über den heutigen Baugrößenbereich von orientieren. Sportballonen ein Δk von 0.01. Innerhalb einer Ballonmission liegt das Δk in Folge von Ballastabgabe bei 0.1. Im selben Maß streut das statistische Material gebauter Ballone gleicher Baugröße. Ein Δk. das sich aus der Dimensionierungsrechnung ergäbe wäre somit an heute existierenden Ballonen kaum feststellbar.

9.2. Skalierung bei variabler Materialeffizienz

Gelingt es die dichtende Fläche f_D von der strukturellen Fläche $f_{\#}$ zu trennen, dann kann über die gesamte Skala mit einem konstanten f_D und für die strukturelle Fläche mit einer konstanten spezifischen Festigkeit $\epsilon_{\#}$ gerechnet werden.

$$\frac{N_{\text{Bruch},\#}}{f_{\#}} = \varepsilon_{\#} = \text{konst.}$$
(38)

Mit

$$N1 = \frac{N_{Bruch,\#}}{j} = \frac{\varepsilon_{\#} \cdot f_{\#}}{j} = \frac{\varepsilon_{\#} \cdot (f - f_{D})}{j}$$
(39)

und N1 nach Gleichung (26) und f nach Gleichung (8) ergibt sich die quadratische Gleichung (40)

$$\mathsf{R}^{2} \cdot \left[\rho_{\mathsf{L}} \cdot g \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) \cdot \left\{ \frac{(1 - k) \cdot (1 - \cos \phi)}{3 \cdot \sin^{2} \phi} + \frac{2 \cdot k}{3 \cdot \sin^{2} \phi} + \frac{1}{2} + \frac{\cos^{3} \phi - 1}{3 \cdot \sin^{2} \phi} \right\} \cdot \frac{j}{\epsilon_{\#}} \right] + \mathsf{R} \cdot \left[\frac{-1}{3} \cdot (1 - k) \cdot \rho_{\mathsf{L}} \cdot (1 - \frac{\mathsf{M}_{\mathsf{G}}}{\mathsf{M}_{\mathsf{L}}}) \right] + \mathsf{f}_{\mathsf{D}} = 0$$

Diese kann für gegebene k und φ = 179,9999° gelöst werden.

Mit einer Strukturfestigkeit von 14000 N/m bei einem Flächengewicht von 0,055 kg/m², sowie einem f_D von 0,2 kg/m² folgen die Verläufe der skalenabhängigen Effizienz in den Abbildungen 19 und 20. Das Maximale Volumen von 3,7·10¹⁰ liegt nun 2 Größenordnungen höher mit einem k = 0. Die minimale Ballongröße hat ein Volumen von 0,6 m³ mit einem k = 0. Dazwischen gibt es eine optimale Ballongröße V = 1,1·10⁵ m³ für ein maximal erreichbares k = 0,965. Um dieses Optimum erstreckt sich ein Volumenbereich über 2 Größenordnungen in dem die Effizienz nahezu konstant ist. Für den Größenbereich bis 10'000 m³ zeigt sich jedoch auch hier, dass sich die typischen Baubereiche von Gewebegewicht (>40 g/m²) und Volumen (ab 300 m³) nicht überlappen und somit Skalierungsgesetzte gebauter Ballone für diesen Volumenbereich auch dieser Dimensionierungsgleichung nicht folgen können, sondern sich an minimal verfügbaren Querschnitten orientieren.

Abbildung 19. V und f über k für konstantes $f_D = 0.2$ kg/m² und $\epsilon_{\#} = 2.54 \cdot 10^3$ (m/s)²

Abbildung 20. V und f über k für konstantes $f_D = 0.2 \text{ kg/m}^2$ und $\epsilon_{\#} = 2.54 \cdot 10^3 \text{ (m/s)}^2$

10. Zusammenfassung

Es wurde die analytische Lösung der Spannungsverteilung in einem Kugelballon in Abhängigkeit des aufgehängten Massenanteils hergeleitet. Anhand des minimalen Aufhängwinkels zeigt sich, dass die strukturelle Effizienz für den Kugelballon ähnlich Form bestimmend ist wie in der natürlichen Tropfenform. Während beim Kugelballon die Formeffizienz gewahrt bleibt nimmt sie beim natürlichen Tropfen mit zunehmendem Hüllenmassenanteil ab. Der Hüllenmassenanteil kann im Bereich von 0 bis 1 gut mit der dimensionslosen Kennzahl Sigma korreliert werden. Für vertikales Fallen und Steigen < 5 m/s ist die obere Polspannung im Schwebezustand dimensionierend. Die Nutzlasteffizienz der maximalen theoretischen Baugrößen liegt bei 0 %. Skaliert das Flächengewicht nach dem erforderlichen Materialquerschnitt ist der effizienteste Ballon der kleinste. Sein Volumen geht gegen 0. Skaliert das tragende Flächengewicht mit den Spannungen und das dichtende Flächengewicht mit der Oberfläche gibt es eine optimale Ballongröße für die höchste Nutzlasteffizienz. Für den bekannten Baubereich ist die Skalierung der Nutzlasteffizienz abhängig von verfügbaren Minimalquerschnitten. Sie kann daher keiner Dimensionierungsgleichung folgen.

Literatur

- [1] Schlichting, H.; Truckenbrodt, E.: *Aerodynamik des Flugzeuges, Erster Band*, Springer Verlag, Berlin Heidelberg New York, 1967, S. 70
- [2] Achenbach, E.: *Experiments on the flow past spheres at very high Reynolds numbers*, J. of Fluid Mech. (1972), vol. 54, part 3, pp.565-575
- [3] Hucho, W.H.: *Aerodynamik der stumpfen Körper*, Braunschweig, Wiesbaden, Vieweg, 2002, S.118
- [4] Smalley, J. H.: *Determination of the Shape of a Free Balloon.* AFCRL-64-734, 1963, Appendix II