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Introduction  

A number of arguments may suggest that solid continua could be investigated with spring cell 

substitutes instead of finite elements.  The main arguments would be a simplified discrete 

representation, microstructural modelling, uniaxial material laws, the resolution of 

progressing damage and failure. However, the facts damp the high expectations. Only specific 

continua can be represented by spring cells.  

There is considerable contemporary research being done on Lattice Spring Models. The 

initiative work has been performed by Hrennikoff [1]. In contrast to the representation of solid 

continua by spring grids also grid structures were analysed by continuum methods [2]. Given 

the non-exhaustive state of the art, two complementary doctoral dissertations at the ISD in 

Stuttgart are devoted to the spring cell substitution of continua. One aims at defining the 

limits of the approximation of defective bar-spring models, the other extends to a rigorously 

condensed representation of the continuum by introducing additional angular springs.  

An advanced stage of the research work [3] [4] was exposed and discussed at the international 

ECCOMAS 2016 Congress in the framework of the thematic session “Spring Lattice Models 

for Linear- and Nonlinear Continua”. The report on the work performed at Coimbra 

University on the grid generation and stress analysis of shell structures [5] completed the 

available background as the starting point of the scheduled DAAD project. Also of interest 

was the diverse approach to spring cells based on the natural representation of the elastic 

continuum [6].  

The project “Einsatz von Stabgittermodellen für Schalentragwerke - Employment of Spring 

Lattice Models for Shell Structures” was conceived for investigating the utility of the ISD 

spring cell models in the context of shell structures, and for proving them against the expertise 

available at Coimbra University. The first of the two year project deals with the elastic shells, 

the subject of the present account. Apart from membrane shells, the investigations also deal 

with the modelling of shell structures with bending stiffness. A specific programme 

implementation of the spring models is used at the ISD, whereas Coimbra relies on the Finite 

Element Programming System – FEPS [7] developed in Stuttgart.
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A  Preliminaries  

A.1  Contrasting Continuum- with Reticulated Shells 

Arches and shells can balance external forces without significant bending moments, provided 

that they have the adequate anti-funicular shape of the external forces. Arches and single-

curvature shells show the same structural behaviour characterized by a very low tolerance to 

loading changes, in the sense that even small non-proportional loading changes require 

significant bending moments to balance the external forces. Double curvature shells have a 

more robust behaviour in this respect, since membrane forces remain capable to balance 

external loading even in presence of significant non-proportional loading changes.  

Grid shells display an arch-like behaviour, if they are not triangulated, irrespective of single 

or double curvature, while double curvature triangulated grid shells behave like double 

curvature continuum shells.  

 

A.2  On the Analysis of Reticulated Shells  

The computational capacity of computers in the nineteen-sixties was not sufficient for the 

numerical treatment of space frame shells.  Such wide-span structures could comprise nearly 

half a million discrete members connected at several thousands of joints.  Therefore a 

recourse to solutions for the continuum should help assessing the resistance of the space 

frame against the applied forces. 

The continuum approach implies the establishment of an equivalence between space frame 

and continuum shell.  Given the space frame design, elastic properties and effective thickness 

of the continuum counterpart are determined analogously.  Such a methodology is found in 

[8] for single layer, reticulated, shells composed of triangular assemblies of straight bar 

members.  Thereby, member forces are related to membrane forces, the elastic constants and 

effective thickness of the continuum shell are specified and stability is discussed regarding the 

buckling of individual members, local snapping through and global shell failure.  As a 

particular result it is concluded that the continuum analogue to the skeletal structure should be 

a shell with larger thickness but low elastic properties.  Accordingly, the space frame 

functions as a thick shell of rather spongy material.  In [9] the approach is extended to the 

continuum analysis of double layer space frame shells on the basis of tetrahedral assemblies 

of elastic bar members.  

Structural and theoretical aspects of these remote studies appear nowadays actual in 

connection with the present subject of interest:  the investigation of continua through the use 

of equivalent frameworks.  Among others, a design principle of reticulated shells might be 

kept in mind when generating space grids to model continuum shells:  to minimize the variety 

of members and connections required.      
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B  Theoretical Background  

 

 

Figure 1. Shell No 1 with boundary displacement boundary conditions, which are represented by cones (left) and the load 

condition (right). 

 

 

Figure 2. Shell No 2 with boundary displacement boundary conditions, which are represented by cones (left) and the load 

condition (right). 
 

B.1  The Beam Lattice Model 

Beam lattice models are adequate to represent continuum shells, since they model the bending 

behaviour, while the stress state is much simpler, since it is one-dimensional, provided that 

shear stresses in the shell can be neglected (which is usually the case). Features like instability 

behaviour are qualitatively similar. 

In relation to pin-joined lattices, their ability to model continuum shells has advantages in 

case of low curvatures, since it is avoided that the tangent stiffness matrix becomes singular, 

while keeping the stress distribution in the bar's cross-section nearly homogeneous. This 

happens as long as the bending moments are not needed to balance the external forces, as is 

the case for triangulated lattices. On the other hand, pin-joined models are simpler to 

implement, especially in the case of large displacements, since no rotational degrees of 

freedom need to be taken into consideration. Besides, their yielding and damage behaviour is 

easier to define. 
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B.2  The Pin-joined Bar Approach  

A lattice spring model with normal springs can be used to model two- and three-dimensional 

continua. The material parameters are restricted by the Cauchy relations, so that only 

materials with certain properties can be employed. The stiffness of the trusses can be 

determined by comparing the strain energy of the lattice and the continuum, which only match 

in certain cases e.g. equilateral triangles and rectangles. If distorted cells are used, the 

stiffness of the lattice can be approximated through two conditions. First it is assumed that the 

strain energy of the lattice equals the strain energy of the continuum for a constant strain state. 

Secondly it is assumed that the stiffness is homogeneously distributed over the lattice for an 

isotropic material. This method results in an optimized stiffness model, whereby the 

discretization error between the lattice and the continuum is minimized. This approach is also 

applicable on shells.  

 

B.3  The Condensed Continuum Model 

As presented in a recent paper [10], one can use triangular cells of arbitrary shape comprising 

three normal springs and three angular springs to represent the linear-elastic behaviour of an 

arbitrary material for two-dimensional mechanical systems. The spring constants can be 

obtained by assuming equal elastic strain energy of the lattice model and the continuum 

model under a constant strain state.  

Though this model is derived for two-dimensional problems, the transition to the three-

dimensional space along with the introduction of a finite thickness and the assumption of a 

plane stress state in the elementary cell directly yields a model for membranes in three 

dimensions.  

The model consistently represents the elastic continuum in constant strain elements with all 

properties condensed in longitudinal and angular springs.  

 

B.4  Generation of Triangular Grids for Shell Computation 

Generating triangular grids for arbitrarily shaped shells is a demanding task, especially if 

some kind of regularity is required. Usual approaches include the use of the Delaunay 

criterion, advancing fronts, either from one side or in a ring-wise construction from the outer 

contour, etc. . Aspects of the grid generation technique were presented in [5]. 

 

C  Numerical Investigations  

Numerical investigations have been performed to test the viability of modelling shells by 

means of single layered pin-joined bars and beam lattice models. The first ones exhibit  

numerical difficulties in the cases of low curvatures. Beam lattice models show a qualitatively 

similar behaviour as continuum shells. Models of double layered pin-joined lattices have been 

developed and are in the initial stage of testing. 



5 

 

C.1  Membrane Shell 

For the comparison of the condensed continuun model with the defective stiffness model, a 

linearized deformation analysis of shells under a constant gravity load is carried out. 

These calculations yield two main results. Firstly, as expected, solutions can only be obtained 

for configurations with a double curvature over the whole shell. Areas lacking this double 

curvature have no stiffness perpendicular to the surface.  

 

Secondly, the displacement results for shell No 1 with the consistent, condensed continuum and 

the optimized stiffness model Figure 3 and Figure 4 are much less smooth (folds) than the 

results for both the beam model and pin-joined bar model with a constant bar area, see e.g. 

Figure 5. On the one hand it was found that these results do not depend on the form-finding 

procedure for the unloaded shell, if it is based either on a membrane or on a pin-joined bar 

model. On the other hand it can be shown that the folds are caused by the geometry of the Shell 

Figure 4: Vertical Displacement of optimized stiffness model. The absolute values of the displacements 

Figure 3:  Vertical displacement of the different models. The absolute values of the displacements 
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No. 1 at the regions of low curvature. A model with bending stiffness (double-layer model, 

Figure 6) results to a smooth displacement field without appreciable folds. 

It is suspected that the results of the consistent, condensed continuum model may be improved 

by including additional shell-bending related angular springs, which restrict the out-of-plane 

angle changes of adjacent triangular cells. This should be of concern in future investigations.  

A similar result to the condensed continuum model is obtained for shell No 1 by the optimized 

stiffness lattice model as shown in Figure 4. 

 

 

Figure 5: Deformed constant-bar-area and optimized stiffness model of Shell No. 1 
 

 

 

C.2  Bending Stiffness 

Shells with a low curvature require a bending stiffness, otherwise instabilities can occur due 

to missing out-of-plane stiffness. Shell No 2 shows such instabilities and therefore cannot be 

computed with a single layer normal spring model. In a linear simulation rigid body motions 

occur at unstable areas. This areas can be located by means of curvature calculations as an 

indicator. To evaluate the shell curvature, the angle φ between the normal vectors of adjacent 

nodes can be determined. The minimum angle of each node is depicted in Figure 7 and points 

out the areas with a low curvature. Figure 7 shows that the transition between the gates and 

pedestals is the critical area.  

 

Figure 6: Displacement v of a double-layer model of Shell No. 1 
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Figure 7. Minimal angle φ between the normal vectors of adjacent nodes 
 

 

One option to avoid this restriction of the single layer model is the extension to a volume 

model. The volume model is generated by blowing out the surface in both directions. The 

lattice is equipped with wedge cells (Figure 8). The result for the vertical displacement is 

shown in Figure 9. Another option is the introduction of a nonlinear geometric model with 

pre-stress, which could be part of prospective studies. 

 

 

 

Figure 8. Cell of the volume model consisting of three tetrahedrons. 
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Figure 9. Vertical displacement of the half symmetric-shell model. The absolute displacement depends 

on the thickness of the shell.  
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