
Proceedings of TMCE 2012, May 7–11, 2012, Karlsruhe, Germany, edited by I. Horváth and Z. Rusák
c© Organizing Committee of TMCE 2012, ISBN —

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT
MANUFACTURING BY MEANS OF GRAPH-BASED DESIGN LANGUAGES

Peter Arnold
Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen

Universität Stuttgart
arnold@isd.uni-stuttgart.de

Stephan Rudolph
Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen

Universität Stuttgart
rudolph@isd.uni-stuttgart.de

ABSTRACT
By now there still exists a major gap in the seam-
less information integration between product design
and manufacturing processes. The reasons for this
gap are manifold, however the incompatibility be-
tween the modeling philosophy used in the product
design and for product manufacturing as well as the
inconsistency in the data models and formats used in
both areas are among the most obvious. Bridging this
gap can be achieved by the use of graph-based de-
sign languages. The approach is illustrated using an
aircraft panel structure model which is incrementally
mapped by a sequence of model-transformations into
a model from which the digital factory which pro-
duces the designed panel structure can be generated
automatically. This proves that topological and para-
metrical design changes in the design phases can be
propagated automatically into a digital factory envi-
ronment, where the effects of the design changes can
be evaluated using appropriate time or cost metrics.
According to the authors best knowledge this is the
first time that the gap between product design and
product manufacturing is digitally closed and that
design changes and resulting manufacturing process
updates are successfully automated for parametrical
and topological changes in design and production.

KEYWORDS
Design language, model transformation, design au-
tomation, digital factory, manufacturing sequence

1. INTRODUCTION
The manufacturing of the product on the shop floor
is economically the most important phase depend-
ing on the product development process since all de-

sign decision have a great impact on the subsequent
value creation process. The digital factory is a tool
to support the development of the real factory and
a lot of digital models and simulations are available
for this purpose. The product development phase is
nowadays also largely supported by digital models.
Currently the two fields (e.g. of design and produc-
tion) are not really connected with each other and
after significant changes in models in an early de-
sign stage a lot of models must be updated. Fur-
thermore, if product design changes are taken seri-
ously and involve not only parametrical but topolog-
ical changes, conventional software tool suites with
internal parametric-associative process chains reach
their theoretical and practical limitations. As a con-
sequence, often only few alternative design variants
are compared due to tight time contraints. However,
it is pointed out that it would be very useful if the im-
pact of early design decisions (or changes) could be
quantified in the factory.

To overcome the gap between product design and
product manufacturing, the novel approach of graph-
based design languages is used. The concept of de-
sign languages leans from natural languages spoken
by humans in which a vocabulary and rules make up
a grammar. This means that a valid sentence is a le-
gal combination of vocabulary representing a valid
design. A key aspect in such a design language is
its graphical format in form of a graph-based de-
sign language based on the Unified Modeling Lan-
guage (UML). The language aspect beeing ‘graph-
based’ allows to modify topology (i.e. the question
whether a certain object, property or behavior exists)
can be changed as easy as the design parameters con-
tained in a node of the graph. Design languages offer

1

therefore a combined manipulation scheme for de-
sign topology and parameters. In principle the ap-
proach consists of a central data model and a ded-
icated sequence of model transformations to incre-
mentally change this model which ensures that the
actual model is always ‘up to date’ and all changes
along the design process chain can be automatically
propagated downward. This ‘front-loading’ allows
to investigate the effects of design and manufactur-
ing alternatives in the digital factory.

The approach is illustrated using the example of the
conceptual design phase for an aircraft structure ele-
ment (e.g. panels) which is subsequently mapped by
a sequence of model transformations into a model
which allows to generate the digital factory which
produces the designed structure automatically. Fi-
nally it is shown that significant topological and para-
metrical design changes in the conceptual design
phase can be propagated automatically into a digi-
tal factory enviroment, where the effects of both the
topological and parametrical design changes can be
evaluated using time or cost metrics.

1.1. Graph-based desing languages
The concept of graph-based design lan-
guages (Rudolph, 2003) has evolved over the last ten
years into a generic framework for the definition of
computerized design processes. The corresponding
design compiler (called design compiler 43) was de-
veloped by the IILS mbH (http://www.iils.de, 2012)
in cooperation with the University of Stuttgart. The
design compiler 43 generates design representa-
tions in analogy to the principle of compilation
known from modern programming languages (see
figure 1). In principle, design languages consist of a
meta-model that stores all relevant parametrical and
topological design information and acts as a central-
ized model repository. It uses a set of design rules
and a design compiler that executes the design rules
and automatically derives the analysis models of the
respective design domains (CAD, CFD, FEM, . . .).
The formalisms of design languages are discussed
in depth in (Alber & Rudolph, 2003) and (Rudolph,
2002). The applications in the automotive sector is
shown in (Haq & Rudolph, 2004) and (Kormeier
& Rudolph, 2006) and in the aerospace sector are
presented in (Schäfer & Rudolph, 2004), (Irani &
Rudolph, 2003) and (Gross & Rudolph, 2011).

As a meta-model to store the data for the so called
graph-based design languages an international stan-
dardized modeling language, the Unified Modeling

Figure 1 design compiler architecture (Rudolph, 2002)

Language (UML) (OMG, 2009), is used. The UML
has been developed by software engineers and pro-
vides many features to model data to describe ob-
ject oriented software. It also has extension mecha-
nisms (so-called lightweight and heavyweight exten-
sions) to extend the UML with domain specific as-
pects (Reichwein, 2011). System engineers have also
defined a modeling standard, the Systems Modeling
Language (SysML) (OMG, 2010), which has com-
mon modeling subsets with the UML and has some
additional diagrams and modeling elements. How-
ever, the discussion of the pros and cons of SysML
as a language alternative versus UML is not in the
scope of the present paper.

To be able to reproduce the design process and
the associated model changes, model transforma-
tions (OMG, 2003) are used and their sequence is
modeled in a UML activity diagram.

1.2. Digital factory
The term ‘digital factory’ is defined as: Digital fac-
tory is the generic term for a comprehensive network
of digital models, methods and tools - including sim-
ulation and 3D visualisation - integrated by a con-
tinuous data management system. . . . Its aim is the
holistic planning, evaluation and ongoing improve-
ment of all structures, processes and resources of the
real factory in conjunction with the product. (VDI
4499, 2008)

Other definitions are given by (Bley & Franke, 2001),
(Dombrowski et al., 2001), (Schuh et al., 2002),
(Westkaemper et al., 2003), (Wiendahl, 2002). Es-
sentially the individual definitions of the digital fac-
tory understand these as digital models that represent
the relevant information of the real factory or as a

2 Peter Arnold, Stephan Rudolph

tool to create this model. They also define connec-
tions to the product development and various simula-
tions which are also digital models.

In order to represent data in a model, a meta-model
and a modeling language (meta-metamodel (Booch
et al., 1999)) is needed. The advantages of an object-
oriented modeling and the use of the UML in factory
planning are shown in (Bergholz, 2005). A first ver-
sion of a meta-model of the digital factory (figure 2)
was defined by (Jonas, 1999). The conceptual pos-
sibilities of an automated planning of assembly pro-
cesses are shown in (Cuiper, 2000). A good overview
of possible modeling approaches and their pros and
cons is presented in (Kapp, 2011). (Kuehn, 2006)
suggested an ‘Open Factory Backbone’ to support
the continuous integration of the factory simulation
in the digital factory, but the concept and the underly-
ing information model is not further specified. (VDI
3633-5, 2000) specifies the data link for a efficent
simulation use and points out the need for such an
IT-system that solves the conistency problem.

1.3. Problem statement
According to the definition stated in section 1.2 the
digital factory consist of numerous digital models.
There are basically two approaches to exchange data
between different models (figure 3). The first pos-
sibility is that every model exchanges data with ev-
ery other model but each additional model leads to
a quadratic (n*(n-1)) rise of the needed interfaces.
The second possibility is to use a central data model
which contains all information. To exchange data
between the central model and the domain models
only 2*n interfaces are required. Moreover, because
every model is derived through the central model,
the consistency problem between the different mod-
els is solved elegantly. Additionally, the second ap-
proach is preferrable through the mathematical ob-
servation that there is no bijective mapping between
vector spaces of different dimensionality. It exist
only a transformation between higher spaces to lower
spaces and so the central data model must be a su-
perset of the domains which should be examined.
See (Reichwein, 2011) for more information on the
central data model topic.

Furthermore the general model theory by Sta-
chowiak (Stachowiak, 1973) states that a model is
a limited perception of the reality, in this case of the
real factory. The characteristics of a model are de-
scribed by the protection feature, the shortening fea-

central data
 model

Figure 3 model exchange

ture and the pragmatic feature. The last one says that
every model has a specific purpose at a specific time
and answers a (single) question. Because the design
process can be seen as a sequence of questions that
should be answered, there is the need of different
models at different times during the design cycle and
moreover, it is an iterative process. Often recurrent
routine activities must be executed and it is difficult
to implement algorithms because the data is spread
over different, often proprietary simulation models.

1.4. Solution approach
In this paper, the method of graph-based design lan-
guages will be applied to the digital factory to try
to address the existing problems. In particular to
overcome the restriction of the numerous proprietary
models the relevant data is kept in a central data
model. To get the full benefit, it is also useful to use
the same approach on the product development. This
will be demonstrated by prior work on an airplane
panel (Fuhr, 2010). To demonstrate the possibility of
model transformations to describe engineering activ-
ities, a factory cell and a painting simulation will be
used. Every time a change occurs it is possible to re-
execute the transformations and to solve the consis-
tency problem. Moreover, an algorithm to determine
assembly sequences automatically will be presented.

2. PRIOR WORK
Many conceptual design studies have been done us-
ing graph-based design languages which also refer-
enced in section 1.1. The product which is consid-
ered now in detail is described below.

2.1. Aircraft
The aircraft design was also target of various stud-
ies with design languages. One language has been
build to generate the exterior skin of the airplane for
use in a computational fluid dynamics (CFD) simu-

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT MANUFACTURING 3

Figure 2 Meta-model digital factory (Jonas, 1999)

Figure 4 aircraft family design and panel details

lation (Böhnke, 2009). Another language has been
created to generate structural components of a fuse-
lage section (Fuhr, 2010) which is now outlined in
more detail, see figure 4.

The shortening feature mentioned in section 1.3
states, that from the set of all attributes or elements of
the original just those that are relevant for the specific
modeling purpose need to be selected. A possible de-
composition of an airplane panel is shown in figure 5.
This is a geometric decomposition, but functional or
any other kinds of decomposition principles are also
possible. The meta-model for an airplane panel de-
sign can be created with these identified components.

After this, a design sequence must be defined. For
example, to define the initial parameters, a dimen-
sions concept needs to be calculated and the re-
quired components must be added. This sequence
can be modeled as an activity diagram in the de-
sign language. The steps in this sequence modify

Figure 5 decomposition airplane panel (Fuhr, 2010)

the model and can be represented as model trans-
formations. This way every design step is captured
in digital form. Different kinds of transformations
are possible, ranging from the simple addition of a
component to the execution of complex algorithms.
Once the process chain is established, various vari-
ants with different parameters and topology in CA-
TIA (http://www.catia.com, 2012) (see figure 6) can
be generated.

3. DIGITAL FACTORY META-MODEL
A meta-model for the digital factory from the litera-
ture was introduced in section 1.2. This meta-model
was implemented in the UML and analyzed in de-
tail. It turned out that it is well suited to model
the major aspects of the central model for the dig-
ital factory. The class Process was extended with
subclasses like Handling, Joining, etc. to describe
the assembly process more precise (Grote & Feld-

4 Peter Arnold, Stephan Rudolph

Figure 6 airplane panel variants (Fuhr, 2010)

husen, 2007) and because the path planning should
also be included, the package Path (figure 7) was
added. For this purpose the path planning meta-
model of DELMIA (http://www.delmia.com, 2012)
was implemented.

Figure 7 package ‘Path’ in the meta-model

The interface to the product development and
manufacturing equipment creation works well. For
example, on the product development side the class
Product has an association to the Construction-
Product class. The top class of the meta-model
for the product inherits from this class. So the
connection can be established and the accessibility
of all relevant information of the product is given
during the factory planning process.

The use of the meta-model is shown in figure 8. The
product is represented during the planning process
through an instance of the class PlanningProduct.
This instance is linked to the corresponding instance
in the product development that inherits from Con-
structionProduct. If for example during the plan-

ning process information of the mass of the product
is needed, it can be accessed through the interface.

Figure 8 example interface to product development

4. FACTORY PLANNING
As seen in chapter 2.1 one can build up a model of
a specific airplane panel relatively fast. Starting with
the relevant panel information, a digital factory cell
for the assembling can be designed and generated.

4.1. Factory sequence planning
For this purpose one variant of a planning sequence
of the factory is modeled. Each step in figure 9 is
again a sub-sequence leading to the following hierar-
chical sequence of steps.

The first step importProductData is to import the
relevant product data and create the corresponding
planning instances in the central model. Each part
is linked to its construction part. Before a product
model can be imported, some conditions must be sat-
isfied. For example, the local product coordinate ori-
gin should be located in a useful position on the prod-
uct because this will make the path planning easier.
Since this is no issue in the airplane panel design
phase a transformation is added to solve this issue.

The second step addResourceAndLayout adds the
necessary resources and defines their relationship
with respect to the product. The coordinates for the
layout of the manufacturing cell are defined and can
also be easily edited by an interface to a layout pro-
gram. In this case, a simple java program, in which
the coordinates are defined by simple drag and drop
operations, is used. The same interface mechanism
as described in section 3 for the product develop-
ment will also be used for the resources. So first the
planning instances are created and linked to abstract
place holders for the resources. The resources will
be selected on runtime and can also be modeled as
a graph-based design language with the products as
‘input’. This way the resources can be adapted to the
actual product configuration.

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT MANUFACTURING 5

Figure 9 Factory sequence planning

In the third step processResources the resources will
be processed. First, the main assembly group will
be placed on the corresponding resource and the po-
sition of all sub-assembly groups and products will
be calculated. Second, all products will be placed
on their resources. The mounting position is stored
and an instance for the specific assembly process for
each product is created. Finally, the robots will be se-
lected. For this purpose a certain kind of library (fig-
ure 10) was created. Because at this point in the plan-
ning all products are placed on the resources and all
mounting position are known, the maximum ranges
and the maximum loads for the robots are defined.
With this input, a specific robot can be selected (fig-
ure 10 and 11). In this case KUKA robot models are
used in DELMIA. Once a robots is selected, a rule
(figure 12) replaces the abstract placeholder instance
with a specific one.

Figure 10 robot library

In the fourth step generateProcesses all processes
will be generated and all operations and paths will be
calculated automatically. For more information on
the generation of the Path Planning see chapter 4.2.
First, the ‘pick and tool release’ process with its paths
is generated. Next, the handling and the joining pro-
cesses will be created as described in section 4.2.

The last step arrangeProcesses consist of the assem-
bly sequence calculation described in chapter 4.3.

4.2. Path planning
The path planning is an important part of the factory
planning. As described in chapter 3, the process is

Figure 11 robot library subprogram

Figure 12 robot KUKA KR16 rule

divided in several sub-steps. Only the handling and
the joining steps are considered. Before a part can
be joined, it must be first placed in the correct po-
sition for the handling process. This process can be
divided in three parts. The first sub-path from the
resource to a position in the close-up range is pro-
vided by the resource itself. According to the object-
oriented paradigm ‘loose coupling and a strong bond
(cohesion)’ all information for this sub-path should
be clustered with the resources. This way a resource
can easily be exchanged. The second sub-path goes
from this position in the close-up range of the re-

6 Peter Arnold, Stephan Rudolph

source to a position near the final product position.
In this stage the shortest path is chosen and (for the
moment) no collision detection is undertaken since
this feature is provided later by the domain model in
DELMIA. The last sub-path is the final product posi-
tioning. Because this is product specific and not the
main aim of the paper, no generic claim for this ap-
proach is made. Nevertheless, the following method
has proven to be practical and robust in this case
study. Starting at the final product position which
is known, all path position can be calculated relative
to it. This way it is easy to reuse the paths if there are
many similar parts. The joining paths are generated
in the same way. Each of these steps needs a tool to
handle the part accordingly. Thus the paths to pick
and release the tool are also needed. For this purpose
the same approach as for the resources is used. In
this way the tools can also be changed without fur-
ther effort.

4.3. Assembly sequence

The assembly sequence determination is an impor-
tant component of the factory planning process.
Therefore a lot of research has been done already
on this topic. The algorithms can roughly be di-
vided into two classes of the ‘recursive decomposi-
tion of the assembly’ and the ‘mathematically ori-
ented method of graph theory’. Before the assembly
sequence can be extracted through decomposition,
the product parts must be combined into the product
in the composition process, so this approach often
seems a bit long-winded. An overview about graph-
based algorithms contains (Whitney et al., 1999).

Basically both approaches need a set of constraints
and compute all possible assembly sequences for this
set. But this is not feasible for a large number of as-
sembly parts because either many conditions have to
be set or a very large number of sequences are gener-
ated. Especially in cases where parts can be assem-
bled simultaneously the number of sequences gener-
ated explodes with n!. For example, in the airplane
panel assembly, the clips in a row can be assembled
in parallel and for 6 clips this would give 6!=720
sequences per row which is not very manageable.
Therefore we use a graph algorithm that is normally
used for generation of the solution path for a mathe-
matically constraint system. Mathematical equations
express correlations between variables and part con-
nections can be expressed accordingly. More infor-
mation on the algorithm can be found in (Serrano,
1987). In figure 13 you can see a graphical user in-

Figure 14 only mating conditions

terface (GUI) for the assembly sequence algorithm.
On the left side you see a list of all assembly opera-
tions and the parts are listed on the top side. In the
editor area, the conditions can be defined which as-
sembly operation couple with which part. For this
group of conditions the assembly sequence is calcu-
lated immediatedly on the right side. The constraints
for the airplane panel are shown, which can be de-
termined directly from the product model, for exam-
ple: ‘stringer is connected to clip 1-5’ (figure 14).
This set of constraints not yet determines a unique
sequence so further constraints are needed. Such ad-
ditional constraints cannot be determined easily from
the product development because these constraints
are mainly manufacturing conditions. The maximal
parallel assembly sequence can be determined after
these additional constraints are added. For the air-
plane panel example the solution given in Figure 13
can be calculated. Here one can see that all clips
and frames can be assembled interchangeably. In this
way they can be assembled sequentially or simulta-
neously or all combinations in between. This is de-
pendent on how many assembly robots or machines
are available and useful. An algorithm that only gives
all possible assembly sequences would have to calcu-
late 30! solutions, which are about ˜1032 options, so
this is not feasible in practice.

By exchanging groups of conditions, many sequence
variations can be created. If possible, the algorithm
always returns a solution. For example in figure
15, the sequence of the assembly of the clips or the
frames can be inverted by mirroring of the constraints
above or below the diagonal.

4.4. Domain models
The generated central data model with all necessary
input and calculations can now be transformed in do-
main specific models. A transformation to DELMIA

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT MANUFACTURING 7

Figure 13 GUI assembly conditions

V5 from Dassault Systemshas been implemented for
this purpose. The software is accessed through the
application programming interface (API). Since the
software has a lot of features and functions, only
the transformations for the path planning and sim-
ulation workbench have been implemented because
this opens up the possibility to calculate the assem-
bly times and do collision checks on the robot paths.
Besides the DELMIA model, also VRML models for
a quick visualisation may be generated for potential
virtual reality investigations and a model in LaTeX
format for documentation. More domain models can
be easily added.

As a second application a paintwork simulation,
more specifically a coating thickness simulation, was
chosen because it covers a high level of detail and is
tightly connected to the product development. In this
way a wide range of functional design verifications
is illustrated with these two applications. For the

necessary type of paintwork simulation it is impor-
tant to create a ‘good’ meshed surface of the assem-
bly to be painted. Only the paintwork related parts
should be considered and the mesh should have dif-
ferent groups. All this conditions however can be
achieved with model transformations which are not
explained in detail here since they require a lot of
knowledge about the CFD calculation process and
the solver used. Nevertheless it is shown that the dif-
ferent surface meshes can be automatically generated
as it can be seen in figure 16.

Starting from there, the coating thickness simula-
tion was generated in cooperation with the Fraun-
hofer Institute for Manufacturing Engineering and
Automation (IPA) in Stuttgart. On the IPA side the
volume mesh, the definition of the boundary condi-
tions for the simulation, the simulation and the result
post-processing was done. Since an individual vol-
ume mesh for every static spray pattern is needed,

8 Peter Arnold, Stephan Rudolph

Figure 15 arbitary conditions

the complete automation of these activities as model
transformations was realized. In this way the domain
model transformations to DELMIA could be re-used
and a simulation of the paint cabin and the robot paint
paths could be easily generated (see figure 21) with
varying boundary conditions.

Figure 16 surface grid variants

5. RESULTS
Combining all the described approaches gives the
ability to generate various variants of simulations
very fast and without futher effort. All described
components are generated automatically and are
linked to each other. It is possible to change a pa-
rameter or the topology of the airplane panel and ex-
ecute the whole process chain again. In every variant
all resources are adapted for the actual configuration,
all paths are consistent and domain models of the
simulations can be generated. The DELMIA domain
model can also check the pathes on collision. There-
fore different scenarios can be quantified and com-
pared with each other. Figure 17 shows 4 sequence
variants and figure 18 shows 4 airplane panel vari-
ants. The paint simulation is done in the CFD simula-
tion tool ANSYS-FLUENT (http://www.ansys.com/,
2012). The three-dimensional quasi-stationary tur-

bulent flow in the coating was calculated including
gravity, process air flow and the particle movements.
Depending on the size of the airplane panel, there can
be a lot of static spray patterns. In the shown config-
uration with 6 stringers 25 simulations are necessary.
These static spray patterns can be superimposed to
dynamic profiles with a program developed by the
Fraunhofer Institute IPA (figure 20). Also the coat-
ing usage, coating thickness and the application effi-
ciency will be calculated. Moreover, as already de-
scribed, the path of the paint robot can be simulated
using DELMIA to check on possible collisions (fig-
ure 21). The main aim of this work was to establish
a complete process chain from the scratch to the dig-
ital factory. The main focus here was not to exactly
model the simulations but with more effort it would
be possible to generate models in industrial strength
as it has alreday been successfully demonstrated in
another industrial use case (Vogel et al., 2010). How-
ever the paint simulation serves as a simulation ex-
ample for a very detailed functional verification.

Figure 19 mesh for and velocity profile (courtesy
Fraunhofer IPA)

Figure 20 spray simulation (courtesy Fraunhofer IPA)

6. CONCLUSIONS
Summary. The use of graph-based design languages
to generate models of the digital factory is shown.
The whole process is illustrated with an airplane
panel. Model transformations allow to build the cen-
tral data model incrementally. The systematic stor-
age of data in a central data model solves the con-
sistency problem and is a possibility to exchange

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT MANUFACTURING 9

Figure 17 sequence variants

Figure 21 paint cabin simulation in Delmia

data in an unambiguous transformation. It is pos-
sible to automatically generate the different domain
models. This is shown exemplary by a factory cell
in DELMIA and paint simulation in FLUENT. Since
the entire transformation process can be re-run, it is
ensured that the centralized model is up to date and
that it is possible to compare different variants with-
out additional effort besides computation time. Cur-
rently the product, the layout configuration, the path
planning, the assembly sequence and the resources
can be varied. The advantages of the necessary as-
sembly sequence algorithm are presented.

Also it has been clearly demonstrated that the dig-
ital data model created during the compilation pro-
cess of graph-based design languages can success-
fully cover the whole engineering product life-cycle.
This has been illustrated with application of design
languages to aircraft panel design, painting simula-
tion, digital factory process planning and simulation.
The method allows to check which impact a product
design change has on the models of the digital factory
and to automate repetitive activities. The method is
however not really useful when the process is only
run once because of the substantial preliminary over-
head, but in case of many iterative design loops as
they are typical to engineering design processes, the
method can be considered as very advantageous in
both time (acceleration = shorter time to market) and
money (less manual iterations = less cost).

According to the authors best knowledge this is
the first time that the gap between product design
and product manufacturing is digitally closed using
graph-based design languages and the automated up-
date of design changes and resulting manufacturing
process updates was successfully demonstrated for
both parametrical and topological design changes.
All components like the variants in figure 4, the se-

10 Peter Arnold, Stephan Rudolph

Figure 18 panel variants

lection of the robots in 10, the calculation and gen-
eration of the domain models for the assembly se-
quence in figure 17 and the domain model of the
paint simulation are generated automatically. All
data is always consistent and a large diversity of de-
sign and factory variants is possible.

Discussion. Due to the high upfront investment
design languages are only profitable in industrial
applications if the process chains are used many
times (Vogel et al., 2010). For are few design and
planning cycles this overhead may not be justified.
However in case of extensive design optimazation
loops or in the context of a product family the know-
how re-use effect pays of. The whole process ap-
proach can also be applied to sub-processes.

The overhead could be significantly reduced if a
‘factory-backbone’ as a central datamodel already
exists. Thus it has to be clarified if and how model
transformations can be organized and held re-usable
in large projects. Since similar approaches in com-
puter science have the same problems, solutions
might be adopted from there.

Outlook. A spray paint simulation was shown which
simulates the behavior of paint droplets. Similarly,
each step in the whole process could be represented
with more detail and pushed to the actual level of the
frontier of research. As another example, the path

planning could be done at a higher semantic level of
meaning as it is currently done in DELMIA where all
path planning activity works with a sequence of ‘se-
mantically flat’ coordinates. It is expected that rea-
soning about path planning and an appropriate con-
flict resoulution in a design language will be possible
on a much higher semantic level, since the geome-
try of the design object is created with the very same
language. Inside the design language, the geometry
knowledge is therefore available at a much higher se-
mantical level, thus hopefully opening up new possi-
bilities for path planning and collision avoidance.

ACKNOWLEDGMENT
This work has been funded by the Baden-Württem-
berg Stiftung. For the results of the paint spray
simulation, the authors thank Dr. Oliver Tiedje and
Dr. Karl-Heinz Pully (both Fraunhofer IPA), for pro-
viding figures 19 and 20 as well as the fruitful co-
operation and kind support in creating the simulation
behind figure 21.

REFERENCES
Alber, R. & Rudolph, S. (2003). A Generic Approach

for Engineering Design Grammars. Proceedings of the
AAAI Spring Symposium ”Computational Synthesis”.

Bergholz, M. A. (2005). Objektorientierte Fabrikmodel-
lierung. PhD thesis, TH Aachen.

BRIDGING THE GAP BETWEEN PRODUCT DESIGN AND PRODUCT MANUFACTURING 11

Bley, H. & Franke, C. (2001). Integration von Produkt-
und Produktionsmodell mit Hilfe der Digitalen Fabrik.
wt Werkstatttechnik online 91.

Böhnke, D. (2009). Erstellung einer Flugzeugentwurf-
ssprache für die aerodynamische Analyse mittels
CFD-Methoden. Studienarbeit, Universität Stuttgart.

Booch et al. (1999). The Unified Modeling Language
User Guide. Addison Wesley.

Cuiper, R. (2000). Durchgängige rechnergestützte
Planung und Steuerung von automatisierten Mon-
tagevorgängen. PhD thesis, TU München.

Dombrowski et al. (2001). Visionen für die Digitale
Fabrik. Zeitschrift für wirtschaftlichen Fabrikbetrieb
(ZwF) 96, pp. 96–115.

Fuhr, J. (2010). Regelbasierte Generierung von Struk-
turkomponenten einer Flugzeugrumpfsektion mithilfe
von Entwurfssprachen. Studienarbeit, Universität
Stuttgart.

Gross, J. & Rudolph, S. (2011). Hierarchie von Entwurf-
sentscheidungen beim modellbasierten Entwurf kom-
plexer Systeme. Tag des System Engineerings.

Grote, K.-H. & Feldhusen, J. (2007). DUBBEL - Taschen-
buch für den Maschinenbau. Springer.

Haq, M. & Rudolph, S. (2004). EWS-Car: A Design Lan-
guage for Conceptual Car Design. Proceedings of Nu-
merical Analysis and Simulation in Vehicle Engineer-
ing, pp. 213–237.

http://www.ansys.com/ (2012). ANSYS Fluent. Website.

http://www.catia.com (2012). Catia V5R18. website.

http://www.delmia.com (2012). Delmia V5R18. website.

http://www.iils.de (2012). IILS mbH. website.

Irani, M. R. & Rudolph, S. (2003). Design Grammars for
Conceptual Designs of Space Stations. Proceedings of
International Astronautical Congress.

Jonas, C. (1999). Konzept einer durchgängigen, rechn-
ergestützten Planung von Montageanlagen. PhD the-
sis, TU München.

Kapp, R. (2011). Eine betriebsbegleitendes fabriksimula-
tionssystem zu durchgängigen unterstützung der kon-
tinuierlichen fabrikadaption. PhD thesis, Universität
Stuttgart.

Kormeier, T. & Rudolph, S. (2006). Topological Design
Of Shell Structures By Design Languages. Proceed-
ings of Design Engineering Technical Conferences.

Kuehn, W. (2006). Digital factory - integration of simu-
lation from product and production planning towards
operative control. European Conference on Modeling
and Simulation.

OMG (2003). Model Driven Architecture.

OMG (2009). UML Superstructure Specification. 2.2.

OMG (2010). SysML Specification. 1.2.

Reichwein, A. (2011). Application-specific UML Profiles
for Multdisciplinary Product Data Integration. PhD
thesis, Universität Stuttgart.

Rudolph, S. (2002). Übertragung von Ähnlichkeitsbegrif-
fen. Habilitationsschrift, Universität Stuttgart.

Rudolph, S. (2003). Aufbau und Einsatz von Entwurfs-
sprachen für den Ingenieurentwurf. Forum Knowledge
Based Engineering, CAT-PRO.

Schäfer, J. & Rudolph, S. (2004). Satellite design by de-
sign grammars. Aerospace Science and Technology,
pp. 81–91.

Schuh et al. (2002). Integration als Grundlage der digi-
talen Fabrikplanung. VDI-Zeitschrift integrierte Pro-
duktion 144, pp. 48–51.

Serrano, D. (1987). Constraint management in concep-
tual design. PhD Thesis, Department of Mechanical
Engineering, MIT, pp. 64–67.

Stachowiak, H. (1973). Allgemeine Modelltheorie.
Springer.

VDI 3633-5 (2000). Simulation of systems in materi-
als handling, logistics and production - Integration
Of Simulation Into Operational Processes. VDI-
Guidelines.

VDI 4499 (2008). Digital factory Fundamentals. VDI-
Guidelines, pp.3̃.

Vogel, S. et al. (2010). Design and Development of
Exhaust Aftertreatment Systems Based on a Graph-
based Design Language. Heavy-Duty-, On- und Off-
Highway-Motoren. Internationale MTZ-Fachtagung,
5.

Westkaemper et al. (2003). Digitale Fabrik nur was für
die Großen? wt Werkstatttechnik online 93, pp. 22–
26.

Whitney et al. (1999). Designing Assemblies. Research
in Engineering Design, pp. 223.

Wiendahl, H.-P. (2002). Auf dem Weg zur Digitalen Fab-
rik. wt Werkstatttechnik online 92, 4, pp. 121.

12 Peter Arnold, Stephan Rudolph

