Publications

List of current publications from the employees of the ISD

Publications

  1. 2022

    1. Armiti-Juber, A., & Ricken, T. (2022). Model order reduction for deformable porous materials in thin domains via asymptotic analysis. Archive of Applied Mechanics, 92(2), 597–618. https://doi.org/10.1007/s00419-021-01907-3
    2. Kaya Keles, C. S., & Ates, F. (2022). Botulinum toxin intervention in cerebral palsy-induced spasticity management: Projected and contradictory effects on skeletal muscles. Toxins, 14(11), 772. https://doi.org/10.3390/toxins14110772
  2. 2021

    1. Pi Savall, B., Mielke, A., & Ricken, T. (2021). Data-Driven Stress Prediction for Thermoplastic Materials. PAMM, 21(1), e202100225. https://doi.org/10.1002/pamm.202100225
    2. Egli, F. S., Straube, R. C., Mielke, A., & Ricken, T. (2021). Surrogate Modeling of a Nonlinear, Biphasic Model of Articular Cartilage with Artificial Neural Networks. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100188
    3. Lambers, L., Suditsch, M., Wagner, A., & Ricken, T. (2021). A Multiscale and Multiphase Model of Function--Perfusion Growth Processes in the Human Liver. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000290
    4. Mielke, A., & Ricken, T. (2021). Finite element analysis of a 2D cantilever on a noisy intermediate-scale quantum computer. PAMM, 21(1), e202100246. https://doi.org/10.1002/pamm.202100246
  3. 2020

    1. Kaya, C. S., Yılmaz, E. O., Akdeniz-Dogan, Z. D., & Yucesoy, C. A. (2020). Long-term effects with potential clinical importance of botulinum toxin Type-A on mechanics of muscles exposed. Front Bioeng Biotechnol, 8, 738. https://doi.org/10.3389/fbioe.2020.00738
  4. 2019

    1. Drieschner, M., Matthies, H. G., Hoang, T.-V., Rosić, B. V., Ricken, T., Henning, C., Ostermeyer, G.-P., Müller, M., Brumme, S., Srisupattarawanit, T., & others. (2019). Analysis of polymorphic data uncertainties in engineering applications. GAMM-Mitteilungen, e201900010.
    2. Lambers, L., Ricken, T., & König, M. (2019). Model Order Reduction (MOR) of Function--Perfusion--Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN). PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900429
    3. Drieschner, M., Matthies, H. G., Hoang, T.-V., v. Rosić, B., Ricken, T., Henning, C., Ostermeyer, G.-P., Müller, M., Brumme, S., Srisupattarawanit, T., Weinberg, K., & Korzeniowski, T. F. (2019). Analysis of polymorphic data uncertainties in engineering applications. GAMM-Mitteilungen, 42(2), e201900010. https://doi.org/10.1002/gamm.201900010
    4. Seyedpour, S. M., Janmaleki, M., Henning, C., Sanati-Nezhad, A., & Ricken, T. (2019). Contaminant transport in soil: A comparison of the Theory of Porous Media approach with the microfluidic visualisation. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2019.05.095
    5. Henning, C., & Ricken, T. (2019). Polymorphic Uncertainty Quantification of Computational Soil and Earth Structure Simulations via the Variational Sensitivity Analysis. PAMM, e201900289.
    6. Egli, F., & Ricken, T. (2019). On Osmotic Pressure in Hyperelastic Biphasic Fiber--Reinforced Articular Cartilage. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900355
    7. Lambers, L., Ricken, T., & König, M. (2019). A multiscale and multiphase model for the description of function-perfusion processes in the human liver. Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications: Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, 304.
    8. Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. and Appl., 477(1), 592–612. https://doi.org/10.1016/j.jmaa.2019.04.049
    9. Thom, A., & Ricken, T. (2019). Towards a physical model of Antarctic sea ice microstructure including biogeochemical processes using the extended Theory of Porous Media. PAMM -- Proc. Appl. Math. Mech., 19, e201900285. https://doi.org/10.1002/pamm.201900285
    10. Nisters, C., Schröder, J., Niekamp, R., & Ricken, T. (2019). The Taylor-least-squares time integrator scheme applied to tracer equations of a sea ice model. PAMM, 19(1), e201900473. https://doi.org/10.1002/pamm.201900473
  5. 2018

    1. Lambers, L., Waschinsky, N., & Ricken, T. (2018). On a Multi-Scale and Multi-Phase Model of Paracetamol-induced Hepatotoxicity for Human Liver. PAMM, 18(1), e201800454. https://doi.org/10.1002/pamm.201800454
    2. Hopkins, G., Skatulla, S., Moj, L., Ricken, T., Ntusi, N., & Meintjes, E. (2018). A biphasic model for full cycle simulation of the human heart aimed at rheumatic heart disease. Computers & Structures. https://doi.org/10.1016/j.compstruc.2018.02.012
    3. Armiti-Juber, A., & Rohde, C. (2018). On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains. Computat. Geosci. https://doi.org/10.1007/s10596-018-9756-2
    4. Ates, F., Temelli, Y., & Yucesoy, C. A. (2018). Effects of antagonistic and synergistic muscles’ co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Hum Mov Sci, 57, 103–110. https://doi.org/10.1016/j.humov.2017.11.011
    5. Bartel, F., Ricken, T., Schröder, J., & Bluhm, J. (2018). On efficient computation of 3-d simulation within TPM 2 -Framework. PAMM, 18(1), e201800332. https://doi.org/10.1002/pamm.201800332
    6. Moj, L., Ricken, T., Foppe, M., & Deike, R. (2018). Numerical simulation and validation of a solidification experiment using a continuum mechanical two--phase/--scale model. PAMM, 17(1), 611--612. https://doi.org/10.1002/pamm.201710275
  6. 2017

    1. Schulte, M., Jochmann, M. A., Gehrke, T., Thom, A., Ricken, T., Denecke, M., & Schmidt, T. C. (2017). Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. Waste Management, 69, 281--288. https://doi.org/10.1016/j.wasman.2017.07.032
    2. Moj, L., Foppe, M., Deike, R., & Ricken, T. (2017). Micro-macro modelling of steel solidification: A continuum mechanical, bi-phasic, two-scale model including thermal driven phase transition. GAMM--Mitteilungen, 40(2), 125--137. https://doi.org/10.1002/gamm.201720004
    3. Henning, C., Thom, A., & Hettler, A. (2017). Numerical Investigations of the Effects of Dynamic Construction Processes on Deep Excavation Walls. In Holistic Simulation of Geotechnical Installation Processes (pp. 297--302). Springer. https://doi.org/10.1007/978-3-319-52590-7_13
  7. 2016

    1. Henning, C., Moj, L., & Ricken, T. (2016). A ternary phase bi-scale FE-model for diffusion-driven dendritic alloy solidification processes. PAMM, 16(1), 449--450. https://doi.org/10.1002/pamm.201610213
    2. Waschinsky, N., Werner, D., Ricken, T., Dahmen, U., & Dirsch, O. (2016). On a bi-scale and tri-phasic model for the description of growth in biological tissue using the example of the human liver. PAMM, 16(1), 109--110. https://doi.org/10.1002/pamm.201610043
  8. 2015

    1. Werner, D., Ricken, T., Dahmen, U., Dirsch, O., Holzhütter, H.-G., & König, M. (2015). On the Influence of Growth in Perfusion Dependent Biological Systems - at the Example of the Human Liver. PAMM, 15(1), 119--120. https://doi.org/10.1002/pamm.201510050
    2. Seyedpour, S. M., Pachenari, M., Janmaleki, M., Alizadeh, M., & Hosseinkhani, H. (2015). Effects of an antimitotic drug on mechanical behaviours of the cytoskeleton in distinct grades of colon cancer cells. Journal of Biomechanics, 48(6), 1172–1178.
    3. Akdeniz, Z. D., Bayramicli, M., Ates, F., Ozkan, N., Yucesoy, C. A., & Ercan, F. (2015). The role of botulinum toxin type a-induced motor endplates after peripheral nerve repair. Muscle Nerve, 52(3), 412–418. https://doi.org/10.1002/mus.24555
  9. 2014

    1. Pachenari, M., Seyedpour, S. M., Janmaleki, M., Babazadeh Shayan, S., Taranejoo, S., & Hosseinkhani, H. (2014). Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. Journal of Biomechanics, 47(2), 373–379.
    2. Bluhm, J., Bloßfeld, W. M., & Ricken, T. (2014). Energetic effects during phase transition under freezing-thawing load in porous media -- a continuum multiphase description and FE-simulation. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 94(7–8), 586--608. https://doi.org/10.1002/zamm.201200154
    3. Werner, D., Ricken, T., Holzhütter, H.-G., König, M., Dahmen, U., & Dirsch, O. (2014). On growth effects in the human liver. PAMM, 14(1), 105--106. https://doi.org/10.1002/pamm.201410040
    4. Albrecht, D., Ricken, T., & Pierce, D. M. (2014). A Multi-Component Description of Osmotic Driven Deformations in Articular Cartilage. PAMM, 14(1), 109--110. https://doi.org/10.1002/pamm.201410042
    5. Ricken, T., Sindern, A., Bluhm, J., Widmann, R., Denecke, M., Gehrke, T., & Schmidt, T. C. (2014). Concentration driven phase transitions in multiphase porous media with application to methane oxidation in landfill cover layers. ZAMM--Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 94(7), 609--622.
    6. Ates, F., Temelli, Y., & Yucesoy, C. A. (2014). Intraoperative experiments show relevance of inter-antagonistic mechanical interaction for spastic muscle’s contribution to joint movement disorder. Clin Biomech (Bristol, Avon), 29(8), 943–949. https://doi.org/10.1016/j.clinbiomech.2014.06.010
    7. Sindern, A., Ricken, T., Bluhm, J., Widmann, R., Denecke, M., & Gehrke, T. (2014). A coupled multi-component approach for bacterial methane oxidation in landfill cover layers. PAMM, 14(1), 469--470. https://doi.org/10.1002/pamm.201410222
  10. 2013

    1. Sindern, A., Ricken, T., Bluhm, J., Widmann, R., & Denecke, M. (2013). Bacterial methane oxidation in landfill cover layers--a coupled FE multiphase description. PAMM, 13(1), 193--194.
    2. Ricken, T., Dahmen, U., Dirsch, O., & Werner, D. Q. (2013). A Biphasic 3D-FEM Model for the Remodeling of Microcirculation in Liver Lobes. In Computer Models in Biomechanics (pp. 277--292). Springer.
    3. Ates, F., Ozdeslik, R. N., Huijing, P. A., & A., Y. C. (2013). Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. Journal of Electromyography and Kinesiology, 23, 1198–1205. https://doi.org/10.1016/j.jelekin.2013.05.010
    4. Pierce, D. M., Ricken, T., & Holzapfel, G. A. (2013). A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Computer Methods in Biomechanics and Biomedical Engineering, 16(12), 1344--1361.
  11. 2012

    1. Sindern, A., Ricken, T., Bluhm, J., Denecke, M., & Schmidt, T. C. (2012). Phase transition in methane oxidation layers--a coupled FE multiphase description. PAMM, 12(1), 371--372.
    2. Albrecht, D., Ricken, T., Pierce, D. M., & Holzapfel, G. A. (2012). A biphasic transverse isotropic FEM model for cartilage. PAMM, 12(1), 105--106.
    3. Karahan, M., Akgun, U., Turkoglu, A., Nuran, R., Ates, F., & Yucesoy, C. A. (2012). Pretzel knot compared with standard suture knots. Knee Surg Sports Traumatol Arthrosc, 20(11), 2302–2306. https://doi.org/10.1007/s00167-011-1788-2
  12. 2011

    1. Robeck, M., Ricken, T., & Widmann, R. (2011). A finite element simulation of biological conversion processes in landfills. Waste Management, 31(4), 663--669. https://doi.org/10.1016/j.wasman.2010.08.007
    2. Bluhm, J., Bloßfeld, W. M., & Ricken, T. (2011). Simulation of Capillary Effects and Phase Transition under Freezing and Thawing Load in Liquid and Gas Saturated Porous Media. PAMM, 11(1), 455--456.
  13. 2010

    1. Bluhm, J., Ricken, T., & Bloßfeld, W. M. (2010). Simulation of freeze--thaw--cycles in liquid--and gas saturated porous media. PAMM, 10(1), 359--360.
  14. 2008

    1. Bluhm, J., Ricken, T., & Bloßfeld, W. M. (2008). Energetische Aspekte zum Gefrierverhalten von Wasser in porösen Strukturen. PAMM, 8(1), 10483--10484.
  15. 2007

    1. Ricken, T., Schwarz, A., & Bluhm, J. (2007). A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Computational Materials Science, 39(1), 124--136. https://doi.org/10.1016/j.commatsci.2006.03.025
To the top of the page