Publications

List of current publications from the employees of the ISD

Publications

  1. 2021

    1. Seyedpour, S., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), 383.
    2. Seyedpour, S. M., Nabati, M., Lambers, L., Nafisi, S., Tautenhahn, H.-M., Sack, I., Reichenbach, J. R., & Ricken, T. (2021). Application of Magnetic Resonance Imaging (MRI) in liver biomechanics: a systematic review. Frontiers in Physiology, 12, 1563.
    3. Lambers, L., Suditsch, M., Wagner, A., & Ricken, T. (2021). A Multiscale and Multiphase Model of Function-Perfusion Growth Processes in the Human Liver. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000290
  2. 2019

    1. Drieschner, M., Matthies, H. G., Hoang, T.-V., Rosić, B. V., Ricken, T., Henning, C., Ostermeyer, G.-P., Müller, M., Brumme, S., Srisupattarawanit, T., & others. (2019). Analysis of polymorphic data uncertainties in engineering applications. GAMM-Mitteilungen, e201900010.
    2. Lambers, L., Ricken, T., & König, M. (2019). Model Order Reduction (MOR) of Function--Perfusion--Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN). PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900429
    3. Drieschner, M., Matthies, H. G., Hoang, T.-V., v. Rosić, B., Ricken, T., Henning, C., Ostermeyer, G.-P., Müller, M., Brumme, S., Srisupattarawanit, T., Weinberg, K., & Korzeniowski, T. F. (2019). Analysis of polymorphic data uncertainties in engineering applications. GAMM-Mitteilungen, 42(2), e201900010. https://doi.org/10.1002/gamm.201900010
    4. Seyedpour, S. M., Janmaleki, M., Henning, C., Sanati-Nezhad, A., & Ricken, T. (2019). Contaminant transport in soil: A comparison of the Theory of Porous Media approach with the microfluidic visualisation. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2019.05.095
    5. Henning, C., & Ricken, T. (2019). Polymorphic Uncertainty Quantification of Computational Soil and Earth Structure Simulations via the Variational Sensitivity Analysis. PAMM, e201900289.
    6. Egli, F., & Ricken, T. (2019). On Osmotic Pressure in Hyperelastic Biphasic Fiber--Reinforced Articular Cartilage. PAMM, 19(1), Article 1. https://doi.org/10.1002/pamm.201900355
    7. Lambers, L., Ricken, T., & König, M. (2019). A multiscale and multiphase model for the description of function-perfusion processes in the human liver. Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications: Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), September 2-4, 2019, Cape Town, South Africa, 304.
    8. Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. and Appl., 477(1), 592–612. https://doi.org/10.1016/j.jmaa.2019.04.049
    9. Thom, A., & Ricken, T. (2019). Towards a physical model of Antarctic sea ice microstructure including biogeochemical processes using the extended Theory of Porous Media. PAMM -- Proc. Appl. Math. Mech., 19, e201900285. https://doi.org/10.1002/pamm.201900285
    10. Nisters, C., Schröder, J., Niekamp, R., & Ricken, T. (2019). The Taylor-least-squares time integrator scheme applied to tracer equations of a sea ice model. PAMM, 19(1), e201900473. https://doi.org/10.1002/pamm.201900473
  3. 2018

    1. Lambers, L., Waschinsky, N., & Ricken, T. (2018). On a Multi-Scale and Multi-Phase Model of Paracetamol-induced Hepatotoxicity for Human Liver. PAMM, 18(1), e201800454. https://doi.org/10.1002/pamm.201800454
    2. Hopkins, G., Skatulla, S., Moj, L., Ricken, T., Ntusi, N., & Meintjes, E. (2018). A biphasic model for full cycle simulation of the human heart aimed at rheumatic heart disease. Computers & Structures. https://doi.org/10.1016/j.compstruc.2018.02.012
    3. Armiti-Juber, A., & Rohde, C. (2018). On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains. Computat. Geosci. https://doi.org/10.1007/s10596-018-9756-2
    4. Ates, F., Temelli, Y., & Yucesoy, C. A. (2018). Effects of antagonistic and synergistic muscles’ co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Hum Mov Sci, 57, 103–110. https://doi.org/10.1016/j.humov.2017.11.011
    5. Bartel, F., Ricken, T., Schröder, J., & Bluhm, J. (2018). On efficient computation of 3-d simulation within TPM 2 -Framework. PAMM, 18(1), e201800332. https://doi.org/10.1002/pamm.201800332
    6. Moj, L., Ricken, T., Foppe, M., & Deike, R. (2018). Numerical simulation and validation of a solidification experiment using a continuum mechanical two--phase/--scale model. PAMM, 17(1), 611--612. https://doi.org/10.1002/pamm.201710275
  4. 2017

    1. Schulte, M., Jochmann, M. A., Gehrke, T., Thom, A., Ricken, T., Denecke, M., & Schmidt, T. C. (2017). Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. Waste Management, 69, 281--288. https://doi.org/10.1016/j.wasman.2017.07.032
    2. Moj, L., Foppe, M., Deike, R., & Ricken, T. (2017). Micro-macro modelling of steel solidification: A continuum mechanical, bi-phasic, two-scale model including thermal driven phase transition. GAMM--Mitteilungen, 40(2), 125--137. https://doi.org/10.1002/gamm.201720004
    3. Henning, C., Thom, A., & Hettler, A. (2017). Numerical Investigations of the Effects of Dynamic Construction Processes on Deep Excavation Walls. In Holistic Simulation of Geotechnical Installation Processes (pp. 297--302). Springer. https://doi.org/10.1007/978-3-319-52590-7_13
  5. 2016

    1. Pierce, D. M., Unterberger, M. J., Trobin, W., Ricken, T., & Holzapfel, G. A. (2016). A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations. Biomechanics and Modeling in Mechanobiology, 15(1), 229--244. https://doi.org/10.1007/s10237-015-0685-x
    2. Henning, C., Moj, L., & Ricken, T. (2016). A ternary phase bi-scale FE-model for diffusion-driven dendritic alloy solidification processes. PAMM, 16(1), 449--450. https://doi.org/10.1002/pamm.201610213
    3. Waschinsky, N., Werner, D., Ricken, T., Dahmen, U., & Dirsch, O. (2016). On a bi-scale and tri-phasic model for the description of growth in biological tissue using the example of the human liver. PAMM, 16(1), 109--110. https://doi.org/10.1002/pamm.201610043
  6. 2015

    1. Werner, D., Ricken, T., Dahmen, U., Dirsch, O., Holzhütter, H.-G., & König, M. (2015). On the Influence of Growth in Perfusion Dependent Biological Systems - at the Example of the Human Liver. PAMM, 15(1), 119--120. https://doi.org/10.1002/pamm.201510050
    2. Akdeniz, Z. D., Bayramicli, M., Ates, F., Ozkan, N., Yucesoy, C. A., & Ercan, F. (2015). The role of botulinum toxin type a-induced motor endplates after peripheral nerve repair. Muscle Nerve, 52(3), 412–418. https://doi.org/10.1002/mus.24555
  7. 2014

    1. Moj, L., Ricken, T., & Steinbach, I. (2014). Multi-Scale and Multi-Component Approach for Solidification Processes. PAMM, 14(1), 465--466. https://doi.org/10.1002/pamm.201410220
    2. Bluhm, J., Bloßfeld, W. M., & Ricken, T. (2014). Energetic effects during phase transition under freezing-thawing load in porous media -- a continuum multiphase description and FE-simulation. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 94(7–8), 586--608. https://doi.org/10.1002/zamm.201200154
    3. Werner, D., Ricken, T., Holzhütter, H.-G., König, M., Dahmen, U., & Dirsch, O. (2014). On growth effects in the human liver. PAMM, 14(1), 105--106. https://doi.org/10.1002/pamm.201410040
    4. Albrecht, D., Ricken, T., & Pierce, D. M. (2014). A Multi-Component Description of Osmotic Driven Deformations in Articular Cartilage. PAMM, 14(1), 109--110. https://doi.org/10.1002/pamm.201410042
    5. Ricken, T., Sindern, A., Bluhm, J., Widmann, R., Denecke, M., Gehrke, T., & Schmidt, T. C. (2014). Concentration driven phase transitions in multiphase porous media with application to methane oxidation in landfill cover layers. ZAMM--Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 94(7), 609--622.
    6. Ates, F., Temelli, Y., & Yucesoy, C. A. (2014). Intraoperative experiments show relevance of inter-antagonistic mechanical interaction for spastic muscle’s contribution to joint movement disorder. Clin Biomech (Bristol, Avon), 29(8), 943–949. https://doi.org/10.1016/j.clinbiomech.2014.06.010
    7. Sindern, A., Ricken, T., Bluhm, J., Widmann, R., Denecke, M., & Gehrke, T. (2014). A coupled multi-component approach for bacterial methane oxidation in landfill cover layers. PAMM, 14(1), 469--470. https://doi.org/10.1002/pamm.201410222
  8. 2013

    1. Werner, D., Ricken, T., & Ferreira Pfeiffer, A. (2013). On a FEM model for isotropic and transversely isotropic growth in biphasic materials. PAMM, 13(1), 63--64.
    2. Sindern, A., Ricken, T., Bluhm, J., Widmann, R., & Denecke, M. (2013). Bacterial methane oxidation in landfill cover layers--a coupled FE multiphase description. PAMM, 13(1), 193--194.
    3. Ricken, T., Dahmen, U., Dirsch, O., & Werner, D. Q. (2013). A Biphasic 3D-FEM Model for the Remodeling of Microcirculation in Liver Lobes. In Computer Models in Biomechanics (pp. 277--292). Springer.
    4. Ates, F., Ozdeslik, R. N., Huijing, P. A., & A., Y. C. (2013). Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. Journal of Electromyography and Kinesiology, 23, 1198–1205. https://doi.org/10.1016/j.jelekin.2013.05.010
    5. Pierce, D. M., Ricken, T., & Holzapfel, G. A. (2013). A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Computer Methods in Biomechanics and Biomedical Engineering, 16(12), 1344--1361.
    6. Pierce, D. M., Ricken, T., & Holzapfel, G. A. (2013). Modeling sample/patient--specific structural and diffusional responses of cartilage using DT--MRI. International Journal for Numerical Methods in Biomedical Engineering, 29(8), 807--821.
  9. 2012

    1. Sindern, A., Ricken, T., Bluhm, J., Denecke, M., & Schmidt, T. C. (2012). Phase transition in methane oxidation layers--a coupled FE multiphase description. PAMM, 12(1), 371--372.
    2. Albrecht, D., Ricken, T., Pierce, D. M., & Holzapfel, G. A. (2012). A biphasic transverse isotropic FEM model for cartilage. PAMM, 12(1), 105--106.
    3. Karahan, M., Akgun, U., Turkoglu, A., Nuran, R., Ates, F., & Yucesoy, C. A. (2012). Pretzel knot compared with standard suture knots. Knee Surg Sports Traumatol Arthrosc, 20(11), 2302–2306. https://doi.org/10.1007/s00167-011-1788-2
  10. 2011

    1. Robeck, M., Ricken, T., & Widmann, R. (2011). A finite element simulation of biological conversion processes in landfills. Waste Management, 31(4), 663--669. https://doi.org/10.1016/j.wasman.2010.08.007
    2. Bluhm, J., Bloßfeld, W. M., & Ricken, T. (2011). Simulation of Capillary Effects and Phase Transition under Freezing and Thawing Load in Liquid and Gas Saturated Porous Media. PAMM, 11(1), 455--456.
  11. 2010

    1. Bluhm, J., Ricken, T., & Bloßfeld, W. M. (2010). Simulation of freeze--thaw--cycles in liquid--and gas saturated porous media. PAMM, 10(1), 359--360.
  12. 2008

    1. Bluhm, J., Ricken, T., & Bloßfeld, W. M. (2008). Energetische Aspekte zum Gefrierverhalten von Wasser in porösen Strukturen. PAMM, 8(1), 10483--10484.
  13. 2007

    1. Ricken, T., Schwarz, A., & Bluhm, J. (2007). A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Computational Materials Science, 39(1), 124--136. https://doi.org/10.1016/j.commatsci.2006.03.025
  14. 2004

    1. Ricken, T. (2004). Mass Transfer in Porous Media. PAMM, 4(1), 492--493.
  15. 2002

    1. Ricken, T. (2002). Kapillarität in porösen Medien: theoretische Untersuchung und numerische Simulation [{PhD-Thesis}]. Universität Essen.
To the top of the page