Kontakt
+49 711 685 69533
+49 711 685 63706
E-Mail
Visitenkarte (VCF)
Pfaffenwaldring 27
70569 Stuttgart
Raum: 1.001
2025
- Mandl, L., Goswami, S., Lambers, L., & Ricken, T. (2025). Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning. Computer Methods in Applied Mechanics and Engineering, 434, 117586. https://doi.org/10.1016/j.cma.2024.117586
2024
- Arasteh-Khoshbin, O., Seyedpour, S. M., Mandl, L., Lambers, L., & Ricken, T. (2024). Comparing durability and compressive strength predictions of hyperoptimized random forests and artificial neural networks on a small dataset of concrete containing nano SiO2 and RHA. European Journal of Environmental and Civil Engineering, 1–20. https://doi.org/10.1080/19648189.2024.2393881
- Tautenhahn, H., Ricken, T., Dahmen, U., Mandl, L., Bütow, L., Gerhäusser, S., Lambers, L., Chen, X., Lehmann, E., Dirsch, O., & König, M. (2024). SimLivA–Modeling ischemia‐reperfusion injury in the liver: A first step towards a clinical decision support tool. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370003
2023
- Mandl, L., Mielke, A., Seyedpour, S. M., & Ricken, T. (2023). Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem. Scientific Reports, 13, 15566. https://doi.org/10.1038/s41598-023-42141-x
Machine Learning Methods in Mechanics (SS22, SS23)