Kontakt
+49 711 685 63706
E-Mail
Visitenkarte (VCF)
Pfaffenwaldring 27
70569 Stuttgart
Germany
Raum: 1.002
Fachgebiet
- Finite-Elemente-Analyse
- Machine Learning
- Quantum Computing
2023
- Mandl, L., Mielke, A., Seyedour, S. M., & Ricken, T. (2023). Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem. Scientific Reports, 13(15566), Article 15566. https://doi.org/10.1038/s41598-023-42141-x
2021
- Lambers, L., Mielke, A., & Ricken, T. (2021). Semi-automated Data-driven FE Mesh Generation and Inverse Parameter Identification for a Multiscale and Multiphase Model of Function-Perfusion Processes in the Liver. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100190
- Egli, F. S., Straube, R. C., Mielke, A., & Ricken, T. (2021). Surrogate Modeling of a Nonlinear, Biphasic Model of Articular Cartilage with Artificial Neural Networks. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100188
- Pi Savall, B., Mielke, A., & Ricken, T. (2021). Data-Driven Stress Prediction for Thermoplastic Materials. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100225
- Mielke, A., & Ricken, T. (2021). Solving linear equation systems on noisy intermediate--scale quantum computers. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000266
- Mielke, A., & Ricken, T. (2021). Finite element analysis of a 2D cantilever on a noisy intermediate-scale quantum computer. PAMM, 21(1), Article 1. https://doi.org/10.1002/pamm.202100246
2019
- Mielke, A., & Ricken, T. (2019). Evaluating Artificial Neural Networks and Quantum Computing for Solving Mechanical Boundary Value Problems. In A. Zingoni (Hrsg.), Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications (S. 537–542). CRC Press-Balkema.
- Mielke, A., & Ricken, T. (2019). Evaluating Artificial Neural Networks and Quantum Computing for Mechanics. In PAMM (No. 1; Bd. 19, Nummer 1, S. e201900470). https://doi.org/10.1002/pamm.201900470
- Multiscale and Multiphase Materials (SS18)
- Simulation of Coupled Problems (WS18/19)
- Seminar Angewandte Finite Elemente (WS18/19) (WS19/20)
- Nichtlineare Finite-Elemente-Methode (SS19)
- Finite-Elemente-Methode II (WS19/20)
- Methoden des maschinellen Lernens in der Mechanik (SS20, SS21, SS22, SS23,SS24)
- Applied Machine Learning for Engineers (WS20/21, WS21/22, WS22/23, WS23/24,WS24/25)
- Quantum Computing for Engineers (WS20/21, WS21/22, WS22/23, WS23/24,WS24/25)