Experimental Biomechanics Group

The group is dedicated to advancing the understanding of musculoskeletal mechanics and human movement through innovative research in biomechanics.

Research Topics

Our work covers several critical aspects of this field. We delve into the mechanical behavior of soft tissues, particularly skeletal muscles, to understand how they function under various conditions. We explore musculoskeletal biomechanics, investigating how the interplay between muscles, joints, and bones contributes to movement and stability. Our research also extends to orthopedics biomechanics, where we examine the biomechanical aspects of orthopedic conditions and surgeries to enhance treatment outcomes. Understanding how the nervous system controls movement, especially in the context of neuromuscular disorders, is another key area of our focus, as we aim to improve diagnostic and therapeutic approaches. Our research also addresses aging and muscle weakness biomechanics, emphasizing how these factors alter muscle performance over time. We employ advanced techniques, including direct muscle force measurements, biomechanical and musculoskeletal modeling, ultrasound elastography, electromyography, magnetic resonance imaging, intramuscular pressure measurements, and animal experiments. Through our work, we aim to bridge the gap between scientific research and clinical application, contributing to the development of more effective exercise programs and rehabilitation strategies.

Clinical Biomechanics

Head of the Experimental Biomechanics Group

Publications

  1. 2024

    1. Kaya Keles, C. S., Salami, F., Wolf, S. I., & Ates, F. (2024). Optimizing clinical outcomes: Modeling individual muscle force responses to Achilles tendon lengthening surgery using tendon forces quantified in vivo. Gait & Posture, 113, 112–113. https://doi.org/10.1016/j.gaitpost.2024.07.126
    2. Danesini, P. C., Heim, M., Tomalka, A., Siebert, T., & Ates, F. (2024). Endomysium determines active and passive force production in muscle fibers. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2024.112134
    3. Ateş, F., & Röhrle, O. (2024). Experiments meet simulations: Understanding skeletal muscle mechanics to address clinical problems. GAMM-Mitteilungen. https://doi.org/10.1002/gamm.202370012
    4. Sahin Erdogan, M., Sumer Arpak, E., Kaya Keles, C. S., Villagra, F., Ozturk Isik, E., Afsar, N., Yucesoy, C. A., Mur, L., Akanyeti, O., & Saybasili, H. (2024). Biochemical, biomechanical and imaging biomarkers of ischemic stroke: Time for integrative thinking. European Journal of Neuroscience, 1–30. https://doi.org/10.1111/ejn.16245
  2. 2023

    1. Ates, F., Marquetand, J., & Zimmer, M. (2023). Detecting age-related changes in skeletal muscle mechanics using ultrasound shear wave elastography. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-47468-z
    2. Keles, C. S. K., Hiller, J., Zimmer, M., & Ates, F. (2023). In vivo assessment of tibialis anterior muscle in passive and active states using shear wave elastography. Gait & Posture, 106, S94. https://doi.org/10.1016/j.gaitpost.2023.07.117
    3. E, B., S, T., M, G., S, H., & F, A. (2023). Quantifying the effects of achilles tendon lengthening surgery: An intraoperative approach. Frontiers in Physiology. https://doi.org/10.3389/fphys.2023.1143292
    4. Zimmer, M., Kleiser, B., Marquetand, J., & Ates, F. (2023). Characterization of Muscle Weakness Due to Myasthenia Gravis Using Shear Wave Elastography. Diagnostics. https://doi.org/10.3390/diagnostics13061108
    5. Zimmer, M., Straub, L., & Ates, F. (2023). Towards in vivo non-invasive muscle characterization: Shear wave elastography to assess passive and active mechanics of triceps surae. In Gait & Posture (Vol. 100, pp. 26--27). Elsevier BV. https://doi.org/10.1016/j.gaitpost.2022.11.039
    6. Zimmer, M., Kleiser, B., Marquetand, J., & Ates, F. (2023). Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105543. https://doi.org/10.1016/j.jmbbm.2022.105543
    7. Zimmer, M., Bunz, E. K., Ehring, T., Kaiser, B., Kienzlen, A., Schlüter, H., & Zürn, M. (2023). In Vivo Assessment of Shear Wave Propagation in Pennate Muscles Using an Automatic Ultrasound Probe Alignment System. IEEE Open Journal of Engineering in Medicine and Biology, 4, 259–267. https://doi.org/10.1109/OJEMB.2023.3338090
    8. Zimmer, M., Kleiser, B., Marquetand, J., & Ateş, F. (2023). Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105543. https://doi.org/10.1016/j.jmbbm.2022.105543
    9. Kaya Keles, C. S., & Ates, F. (2023). How mechanics of individual muscle-tendon units define knee and ankle joint function in health and cerebral palsy—a narrative review. Frontiers in Bioengineering and Biotechnology, 11, 1287385. https://doi.org/10.3389/fbioe.2023.1287385
    10. Brendecke, E., Tsitlakidis, S., Gotze, M., Hagmann, S., & Ates, F. (2023). Quantifying the effects of Achilles tendon lengthening surgery: An intraoperative approach.
    11. Kleiser, B., Zimmer, M., Ates, F., & Marquetand, J. (2023). Muskelkraft und Scherwellenelastographie (SWE) bei Fazioskapulohumeraler Muskeldystrophie (FSHD). Ultraschall in Der Medizin - European Journal of Ultrasound, 44(S 01), Article S 01. https://doi.org/10.1055/s-0043-1772396
  3. 2022

    1. Zimmer, M., B, K., J, M., & F, A. (2022). Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. Journal of the Mechanical Behavior of Biomedical Materials. https://doi.org/10.1016/j.jmbbm.2022.105543
    2. Keles, C. S. K., & Ates, F. (2022). Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins. https://doi.org/10.3390/toxins14110772
    3. LS, P., F, A., LQ, E., WJ, L., RL, L., KR, K., & AY, S. (2022). Procedures for obtaining muscle physiology parameters during a gracilis free-functioning muscle transfer in adult patients with brachial plexus injury. Scientific Reports. https://doi.org/10.1038/s41598-022-09861-y
    4. Persad, L. S., Ates, F., Evertz, L. Q., Litchy, W. J., Lieber, R. L., Kaufman, K. R., & Shin, A. Y. (2022). Procedures for obtaining muscle physiology parameters during a gracilis free-functioning muscle transfer in adult patients with brachial plexus injury. Sci Rep, 12(1), Article 1. https://doi.org/10.1038/s41598-022-09861-y
  4. 2021

    1. F, A., K, C.-W., W, L., & KR, K. (2021). Intramuscular pressure of human tibialis anterior muscle detects age-related changes in muscle performance. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology. https://doi.org/10.1016/j.jelekin.2021.102587
    2. Persad, L. S., F, A., AY, S., RL, L., & KR, K. (2021). Measuring and modeling in vivo human gracilis muscle-tendon unit length. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2021.110592
    3. Persad, L. S., Ates, F., Shin, A. Y., Lieber, R. L., & Kaufman, K. R. (2021). Measuring and modeling in vivo human gracilis muscle-tendon unit length. J Biomech, 125, 110592. https://doi.org/10.1016/j.jbiomech.2021.110592
    4. Ates, F., Coleman-Wood, K., Litchy, W., & Kaufman, K. R. (2021). Intramuscular pressure of human tibialis anterior muscle detects age-related changes in muscle performance. J Electromyogr Kinesiol, 60, 102587. https://doi.org/10.1016/j.jelekin.2021.102587
  5. 2020

    1. Ates, F., Brandenburg, J. E., & Kaufman, K. R. (2020). Effects of Selective Dorsal Rhizotomy on Ankle Joint Function in Patients With Cerebral Palsy. Frontiers in Pediatrics, 8. https://doi.org/10.3389/fped.2020.00075
  6. 2019

    1. Ateş, F., Davies, B. L., Chopra, S., Coleman-Wood, K., Litchy, W., & Kaufman, K. R. (2019). Intramuscular Pressure of Human Tibialis Anterior Muscle Reflects in vivo Muscular Activity. Frontiers in Physiology, 10, 196. https://doi.org/10.3389/fphys.2019.00196
    2. Ates, F., Davies, B., Chopra, S., Coleman-Wood, K., Litchy, W., & Kaufman, K. R. (2019). Intramuscular Pressure of Human Tibialis Anterior Muscle Reflects in vivo Muscular Activity. Frontiers in Physiology, 10(196), Article 196. https://doi.org/10.3389/fphys.2019.00196
    3. Kaya, C. S., Bilgili, F., Akalan, N. E., Temelli, Y., Ates, F., & Yucesoy, C. A. (2019). Intraoperative experiments combined with gait analyses indicate that active state rather than passive dominates the spastic gracilis muscle’s joint movement limiting effect in cerebral palsy. Clin Biomech (Bristol, Avon), 68, 151–157. https://doi.org/10.1016/j.clinbiomech.2019.06.005
  7. 2018

    1. CS, K., F, B., NE, A., Y, T., F, A., & CA, Y. (2018). O 043 - Mechanics of spastic semitendinosus altered by intermuscular interactions elevate its contribution to pathological resistance against knee extension during gait. Gait & Posture. https://doi.org/10.1016/j.gaitpost.2018.06.061
    2. Ates, F., Temelli, Y., & Yucesoy, C. A. (2018). Effects of antagonistic and synergistic muscles’ co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Hum Mov Sci, 57, 103–110. https://doi.org/10.1016/j.humov.2017.11.011
    3. Ates, F., Andrade, R. J., Freitas, S. R., Hug, F., Lacourpaille, L., Gross, R., Yucesoy, C. A., & Nordez, A. (2018). Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle. Eur J Appl Physiol, 118(3), Article 3. https://doi.org/10.1007/s00421-018-3798-y
    4. Yucesoy, C. A., & Ates, F. (2018). BTX-A has notable effects contradicting some treatment aims in the rat triceps surae compartment, which are not confined to the muscles injected. J Biomech, 66, 78–85. https://doi.org/10.1016/j.jbiomech.2017.10.035
    5. Yucesoy, C. A., & Ate?, F. (2018). BTX-A has notable effects contradicting some treatment aims in the rat triceps surae compartment, which are not confined to the muscles injected. Journal of Biomechanics, 66, 78–85.
    6. Ates, F., Davies, B. L., Chopra, S., Coleman-Wood, K., Litchy, W. J., & Kaufman, K. R. (2018). Intramuscular pressure of tibialis anterior reflects ankle torque but does not follow joint angle-torque relationship. Frontiers in Physiology, 9(JAN), Article JAN.
    7. Ate?, F., Andrade, R. J., Freitas, S. R., Hug, F., Lacourpaille, L., Gross, R., Yucesoy, C. A., & Nordez, A. (2018). Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle. European Journal of Applied Physiology, 118(3), Article 3.
    8. Ates, F., & Yucesoy, C. A. (2018). Botulinum toxin type-A affects mechanics of non-injected antagonistic rat muscles. J Mech Behav Biomed Mater, 84, 208–216. https://doi.org/10.1016/j.jmbbm.2018.05.027
    9. Kaya, C. S., Temelli, Y., Ates, F., & Yucesoy, C. A. (2018). Effects of inter-synergistic mechanical interactions on the mechanical behaviour of activated spastic semitendinosus muscle of patients with cerebral palsy. J Mech Behav Biomed Mater, 77, 78–84. https://doi.org/10.1016/j.jmbbm.2017.08.040
    10. Ate?, F., & Yucesoy, C. A. (2018). Botulinum toxin type-A affects mechanics of non-injected antagonistic rat muscles. Journal of the Mechanical Behavior of Biomedical Materials, 84, 208–216.
    11. Ate?, F., Temelli, Y., & Yucesoy, C. A. (2018). Effects of antagonistic and synergistic muscles? co-activation on mechanics of activated spastic semitendinosus in children with cerebral palsy. Human Movement Science, 57, 103–110.
  8. 2017

    1. Yucesoy, C. A., Temelli, Y., & Ates, F. (2017). Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy. J Electromyogr Kinesiol, 36, 49–55. https://doi.org/10.1016/j.jelekin.2017.07.003
    2. Yucesoy, C. A., Temelli, Y., & Ate?, F. (2017). Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy. Journal of Electromyography and Kinesiology, 36, 49–55.
  9. 2016

    1. Andrade, R. J., Nordez, A., Hug, F., Ates, F., Coppieters, M. W., Pezarat-Correia, P., & Freitas, S. R. (2016). Non-invasive assessment of sciatic nerve stiffness during human ankle motion using ultrasound shear wave elastography. Journal of Biomechanics, 49(3), Article 3.
    2. Ate?, F., Temelli, Y., & Yucesoy, C. A. (2016). The mechanics of activated semitendinosus are not representative of the pathological knee joint condition of children with cerebral palsy. Journal of Electromyography and Kinesiology, 28, 130–136.
    3. Ates, F., Temelli, Y., & Yucesoy, C. A. (2016). The mechanics of activated semitendinosus are not representative of the pathological knee joint condition of children with cerebral palsy. J Electromyogr Kinesiol, 28, 130–136. https://doi.org/10.1016/j.jelekin.2016.04.002
  10. 2015

    1. Sant, G. L., Ates, F., Brasseur, J.-L., & Nordez, A. (2015). Mesure de la raideur de chacun des ischio-jambiers lors d’étirements passifs. Kinésithérapie, La Revue, 15(158), Article 158. https://doi.org/10.1016/j.kine.2014.11.029
    2. Akdeniz, Z. D., Bayramicli, M., Ates, F., Ozkan, N., Yucesoy, C. A., & Ercan, F. (2015). The role of botulinum toxin type a-induced motor endplates after peripheral nerve repair. Muscle Nerve, 52(3), Article 3. https://doi.org/10.1002/mus.24555
    3. Ates, F., Heybeli, N., & Yucesoy, C. A. (2015). Biomedical engineering and orthopedic sports medicine. Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation, Second Edition, 3097–3110.
    4. Ates, F., Heybeli, N., & Yucesoy, C. A. (2015). Biomedical Engineering and Orthopedic Sports Medicine. In Sports Injuries (pp. 3097--3110). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_270
    5. Ate?, F., Hug, F., Bouillard, K., Jubeau, M., Frappart, T., Couade, M., Bercoff, J., & Nordez, A. (2015). Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. Journal of Electromyography and Kinesiology, 25(4), Article 4.
    6. Yucesoy, C. A., Turko?lu, A. N., Umur, S., & Ate?, F. (2015). Intact muscle compartment exposed to botulinum toxin type a shows compromised intermuscular mechanical interaction. Muscle and Nerve, 51(1), Article 1.
    7. Akdeniz, Z. D., Bayrami?li, M., Ate?, F., Özkan, N., Yucesoy, C. A., & Ercan, F. (2015). The role of botulinum toxin type a-induced motor endplates after peripheral nerve repair. Muscle and Nerve, 52(3), Article 3.
    8. Yucesoy, C. A., Turkoglu, A. N., Umur, S., & Ates, F. (2015). Intact Muscle Compartment Exposed to Botulinum Toxin Type a Shows Compromised Intermuscular Mechanical Interaction. Muscle & Nerve, 51(1), Article 1. https://doi.org/10.1002/mus.24275
    9. Le Sant, G., Ates, F., Brasseur, J. L., & Nordez, A. (2015). Elastography Study of Hamstring Behaviors during Passive Stretching. Plos One, 10(9), Article 9. https://doi.org/ARTN e0139272 10.1371/journal.pone.0139272
    10. Ates, F., Hug, F., Bouillard, K., Jubeau, M., Frappart, T., Couade, M., Bercoff, J., & Nordez, A. (2015). Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J Electromyogr Kinesiol, 25(4), Article 4. https://doi.org/10.1016/j.jelekin.2015.02.005
  11. 2014

    1. Ates, F., Temelli, Y., & Yucesoy, C. A. (2014). Intraoperative experiments show relevance of inter-antagonistic mechanical interaction for spastic muscle’s contribution to joint movement disorder. Clin Biomech (Bristol, Avon), 29(8), Article 8. https://doi.org/10.1016/j.clinbiomech.2014.06.010
    2. Ate?, F., & Yucesoy, C. A. (2014). Effects of botulinum toxin type A on non-injected bi-articular muscle include a narrower length range of force exertion and increased passive force. Muscle and Nerve, 49(6), Article 6.
    3. Ates, F., & Yucesoy, C. A. (2014). Effects of botulinum toxin type A on non-injected bi-articular muscle include a narrower length range of force exertion and increased passive force. Muscle Nerve, 49(6), Article 6. https://doi.org/10.1002/mus.23993
    4. Gereli, A., Akgun, U., Uslu, S., Agir, I., Ates, F., & Nalbantoglu, U. (2014). The effect of organic silicon injection on Achilles tendon healing in rats. Acta Orthopaedica Et Traumatologica Turcica, 48(3), Article 3. https://doi.org/10.3944/Aott.2014.3162
    5. Ateş, F., Heybeli, N., & Yucesoy, C. A. (2014). Biomedical Engineering and Orthopedic Sports Medicine. Sports Injuries, 1–17.
    6. Ate?, F., Temelli, Y., & Yucesoy, C. A. (2014). Intraoperative experiments show relevance of inter-antagonistic mechanical interaction for spastic muscle’s contribution to joint movement disorder. Clinical Biomechanics, 29(8), Article 8.
    7. Zeytin, K., ?ilo?lu, N. S., Ate?, F., Vardar Aker, F., & Ercan, F. (2014). The effects of resveratrol on tendon healing of diabetic rats. Acta Orthopaedica et Traumatologica Turcica, 48(3), Article 3.
    8. Gereli, A., Akgun, U., Uslu, S., A?ir, I., Ate?, F., & Nalbanto?lu, U. (2014). The effect of organic silicon injection on achilles tendon healing in rats. Acta Orthopaedica et Traumatologica Turcica, 48(3), Article 3.
    9. Zeytin, K., Ciloglu, N. S., Ates, F., Vardar Aker, F., & Ercan, F. (2014). The effects of resveratrol on tendon healing of diabetic rats. Acta Orthopaedica Et Traumatologica Turcica, 48(3), Article 3. https://doi.org/10.3944/Aott.2014.13.0096
  12. 2013

    1. Ates, F., Ozdeslik, R. N., Huijing, P. A., & A., Y. C. (2013). Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. Journal of Electromyography and Kinesiology, 23, 1198–1205. https://doi.org/10.1016/j.jelekin.2013.05.010
    2. Ates, F., Temelli, Y., & Yucesoy, C. A. (2013). Human spastic Gracilis muscle isometric forces measured intraoperatively as a function of knee angle show no abnormal muscular mechanics. Clin Biomech (Bristol, Avon), 28(1), Article 1. https://doi.org/10.1016/j.clinbiomech.2012.08.012
    3. Ate?, F., Özde?lik, R. N., Huijing, P. A., & Yucesoy, C. A. (2013). Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles. Journal of Electromyography and Kinesiology, 23(5), Article 5.
    4. Ate?, F., Temelli, Y., & Yucesoy, C. A. (2013). Human spastic Gracilis muscle isometric forces measured intraoperatively as a function of knee angle show no abnormal muscular mechanics. Clinical Biomechanics, 28(1), Article 1.
  13. 2012

    1. Karahan, M., Akgun, U., Turkoglu, A., Nuran, R., Ates, F., & Yucesoy, C. A. (2012). Pretzel knot compared with standard suture knots. Knee Surg Sports Traumatol Arthrosc, 20(11), Article 11. https://doi.org/10.1007/s00167-011-1788-2
    2. Yucesoy, C. A., Emre Arikan, O., & Ate?, F. (2012). BTX-A administration to the target muscle affects forces of all muscles within an intact compartment and epimuscular myofascial force transmission. Journal of Biomechanical Engineering, 134(11), Article 11.
    3. Yucesoy, C. A., Arıkan, Ö. E., & Ateş, F. (2012). BTX-A Administration to the Target Muscle Affects Forces of All Muscles Within an Intact Compartment and Epimuscular Myofascial Force Transmission. Journal of Biomechanical Engineering, 134, 111002-1–9.
  14. 2011

    1. Akgün, U., Gereli, A., Uslu, S., Agir, I., Ates, F., Celebi, M., Nalbantoglu, U., Türkmen, M., Basdemir, G., & Karahan, M. (2011). Paper \# 216: The Effect of Organic Silicon Injection on Achilles Tendon Healing in Rats. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 27(10), Article 10. https://doi.org/10.1016/j.arthro.2011.08.216
  15. 2010

    1. Susam, F. Z., Ate?, F., & Yücesoy, C. A. (2010). Demonstration of fiber direction glycogen in the rat EDL muscle with longitudinal sections: Histological assessment,Si?an EDL kasinda fiber yönündeki glikojenin boylamasina kesitlerde gösterimi: Histolojik i?nceleme. 2010 15th National Biomedical Engineering Meeting, BIYOMUT2010.
    2. Yucesoy, C. A., Ate?, F., Akgün, U., & Karahan, M. (2010). Measurement of human Gracilis muscle isometric forces as a function of knee angle, intraoperatively. Journal of Biomechanics, 43(14), Article 14.
    3. Ayturk, F. O., Ates, F., Akgün, U., Karahan, M., & Yucesoy, C. A. (2010). Assessment of the adequency of the current amplitude during intraoperative force measurement of human gracilis muscle,?nsan grasilis kasi kuvvetinin i?ntraoperatif öl? ümünde kullanilan akim ?iddetinin maksimal uyari i??in yeterlili?inin test edilmesi. 2010 15th National Biomedical Engineering Meeting, BIYOMUT2010.
    4. Ate?, F., Akgün, U., Karahan, M., & Yücesoy, C. A. (2010). Intraoperative measurement of human gracilis muscle isometric forces as a function of knee angle,Diz a?isinin fonksiyonu olarak i?nsan grasilis kasi i?zometrik kuvvetinin i?ntraoperatif öl?ümü. 2010 15th National Biomedical Engineering Meeting, BIYOMUT2010.
    5. Yucesoy, C. A., Ates, F., Akgun, U., & Karahan, M. (2010). Measurement of human Gracilis muscle isometric forces as a function of knee angle, intraoperatively. Journal of Biomechanics, 43(14), Article 14. https://doi.org/10.1016/j.jbiomech.2010.06.002
  16. 2009

    1. Ate?, F., Huijing, P. A., & Yücesoy, C. A. (2009). In epimuscularly connected muscle previous activity at high length yields sizable history effects causing decreased muscle force at low lengths,Epimüsküler ba?lantili kasta yüksek boyda önceki aktivite kas kuvvetini azaltan önemli uzama ge?mi?i etkilerine yol a?maktadir. Proceedings of 2009 14th National Biomedical Engineering Meeting, BIYOMUT 2009.
    2. Turkoglu, A. N., Akgun, U., Ate?, F., Yücesoy, C. A., & Karahan, M. (2009). A comparative biomechanical analysis of pretzel: A novel arthroscopic suture knot,Geli?tirilen yeni artroskopik dü?üm pretzel’in kar?ila?tirmali biyomekanik analizi. Proceedings of 2009 14th National Biomedical Engineering Meeting, BIYOMUT 2009.
  17. 2006

    1. Ates, F., Tabako?lu, H. Ö., Bozkulak, Ö., Canpolat, M., & Gülsoy, M. (2006). Elastic scattering spectroscopy of coagulated brain tissues. Proceedings of SPIE - The International Society for Optical Engineering, 6084.
To the top of the page